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A Declarative Language Approach to Device Configuration
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C remains the language of choice for hardware programming (device drivers, bus configuration, etc.): it is
fast, allows low-level access, and is trusted by OS developers. However, the algorithms required to configure
and reconfigure hardware devices and interconnects are becoming more complex and diverse, with the added
burden of legacy support, “quirks,” and hardware bugs to work around. Even programming PCI bridges in
a modern PC is a surprisingly complex problem, and is getting worse as new functionality such as hotplug
appears. Existing approaches use relatively simple algorithms, hard-coded in C and closely coupled with
low-level register access code, generally leading to suboptimal configurations.

We investigate the merits and drawbacks of a new approach: separating hardware configuration logic
(algorithms to determine configuration parameter values) from mechanism (programming device registers).
The latter we keep in C, and the former we encode in a declarative programming language with constraint-
satisfaction extensions. As a test case, we have implemented full PCI configuration, resource allocation, and
interrupt assignment in the Barrelfish research operating system, using a concise expression of efficient
algorithms in constraint logic programming. We show that the approach is tractable, and can successfully
configure a wide range of PCs with competitive runtime cost. Moreover, it requires about half the code
of the C-based approach in Linux while offering considerably more functionality. Additionally it easily
accommodates adaptations such as hotplug, fixed regions, and “quirks.”
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1. INTRODUCTION

Although many attempts have been made to improve on it, C remains the language of
choice for writing code to program hardware, including device drivers, bus configura-
tion, and interrupt routing. C is fast, provides low-level access to hardware registers,
and is trusted by OS developers.

However, trends in hardware are making efficient and correct OS code for hardware
access more difficult to write. Hardware platforms and system interconnects are be-
coming more complex and diverse, while at the same time it is increasingly important
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5:2 A. Schüpbach et al.

Fig. 1. Example PCI tree with one root, three bridges, and 7 devices, showing the decoding of addresses
from one of the three physical memory spaces (e.g. non-prefetchable). Bridge base addresses are bounded
by the union of the base and limit addresses of their children.

for overall performance to derive efficient configurations of devices, interrupts, and
memory regions.

Configuring hardware devices, I/O bridges, and memory regions by interacting with
platform firmware is a surprisingly complex problem in a modern computer. The
same is true for allocating and routing interrupts, handling device hotplug, and other
hardware-related tasks, and this problem is getting worse as new functionality ap-
pears. Existing operating systems code uses relatively simple algorithms to achieve
these goals. These algorithms are simple by the necessity of being hard-coded: they
require low-level access to device registers to achieve their goals, and usually run early
at system start-up within the OS kernel.

Figure 1 illustrates a simplified PCI-based device configuration, and the way that it
is handled by typical operating systems. The OS code must allocate memory regions
to each PCI device, and each PCI bridge in the bus hierarchy, in such a way that every
device receives correctly-sized areas of memory in distinct regions (prefetchable, and
non-prefetchable) of two different address spaces (I/O and memory). These areas must
all be aligned to device-specific boundaries, may not overlap, and should fit into the
total amount of physical address space available for such hardware in the system.

We describe the PCI configuration problem in detail in Section 2, but two factors
make this allocation problem particularly hard. First, hotplugging means that devices
can come and go in the hierarchy, which may entail reconfiguring entire subtrees,
which is in turn disruptive to running device drivers. Second, there are numerous
restrictions on device allocation: certain devices or bridges must be placed at a fixed
address, others incorrectly decode addresses not assigned to them, and platform hard-
ware components such as ACPI sometimes reserve regions of physical address space,
which means that the address ranges must be allocated around these “holes”. As com-
puter architectures become more complex, this list of problems is likely to grow, and
to vary widely from one system to another. We fully expect to see analogous issues for
future interconnects or platform functions.

Most existing OSes deal with this problem with simple algorithms in C such as
sorting devices by address range size, modified with much special-case code. The result
is complex and hard to debug, and (as we show in Section 5) can lead to unpredictable
and inefficient allocation of space as devices are hotplugged. In some cases (such as
Linux on Intel platforms) the OS does not even try to solve the full allocation problem,
instead relying on the platform BIOS to provide an initial allocation, which is difficult
to change.

Our aim is to find techniques for this general class of resource allocation that result
in cleaner, smaller, more flexible code which still accommodates the various quirks,
bugs, and legacy restrictions imposed by real-world hardware. Our overall goal is to
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make such OS code easier to write and evolve over time, and more likely to be correct
in the face of ever-more-complex hardware.

In this paper we investigate the costs and benefits of a radically different ap-
proach: separating configuration logic, such as the algorithms to determine which con-
figuration parameter values should be employed, from the configuration mechanism
(actually reading and writing device registers). The latter we keep in C as part of the
kernel, but the former we encode in a logic programming language with constraint-
solving extensions.

Hardware-related code can be roughly divided into “data path” functionality
(interrupt handlers, packet processing, descriptor management, etc.), and configura-
tion management (PCI programming, ACPI initialization and interpretation, memory
region and I/O space allocation, etc.). Both are critical to the performance and correct
functioning of a system. However, whereas the former must have bounded resource
utilization, particularly in terms of its runtime where it is often on the fast-path, the
performance of the latter code is instead measured in terms of the correctness and op-
timality of the resource allocation and configuration it produces, while its speed is less
critical. As we have pointed out [Schüpbach et al. 2008], these two areas of functional-
ity are at present typically implemented in the same code base, inside the OS kernel,
as low-level C code.

Our hypothesis is that the balance is tipping in favor of expressing configuration
logic, and hardware configuration information, in a rich and high-level language. This
enables complex resource allocation and configuration algorithms to be succinctly
expressed, while being more amenable to adaptation due to changes in hardware
technology, faulty hardware information (“quirks”), varying resource constraints and
optimization goals, and device hotplug. Moreover, the same framework gives applica-
tions and user-level runtimes greater visibility into the available hardware resources
and their current configuration.

We introduce three main contributions. First, in Section 2 we use PCI as an exam-
ple to demonstrate the complexity of hardware configuration as an emerging issue in
system software, and propose the use of declarative language techniques to mitigate
its complexity as hardware becomes both more diverse and more complex.

Second, in Section 3 we describe in detail our initial approach to PCI bus configura-
tion using the ECLiPSe constraint logic programming (CLP) system [Apt and Wallace
2007], a logic language with constraint-satisfaction extensions, and in Section 4 our
solution to the related problem of interrupt allocation. We have implemented full
PCI configuration and interrupt assignment for the Barrelfish [Baumann et al. 2009]
research operating system. Our implementation makes use of the Barrelfish system
knowledge base (SKB) [Schüpbach et al. 2008], an OS service for storing and querying
hardware knowledge which incorporates a port of ECLiPSe.

In Section 5 we present a combined evaluation of this work, focusing on its com-
plexity, adaptability, and performance in comparison to the traditional approach, and
in Section 6 discuss our experience with the new approach so far. The drawbacks in-
clude the need for a complex code base for the language runtime, and increased time
to calculate configuration information. In exchange, the benefits include flexibility, ef-
ficiency of resulting configurations, conciseness of expression, easy accommodation of
special cases, and the ability to easily integrate extra information to guide resource
allocation. We also discuss how trends in hardware and software are likely to affect
this trade-off.

2. BACKGROUND: PCI ALLOCATION

In this article we focus on PCI device programming as an example of hardware config-
uration challenges; in Section 6 we consider related problems.
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Configuring the PCI bridges found in a typical modern computer is emblematic of
a wide class of hardware-related systems software challenges: it involves resource
discovery followed by allocation of identifiers and ranges from compact spaces of iden-
tifiers and addresses. More importantly, a range of hardware bugs and/or ad-hoc con-
straints on particular devices lead to a plethora of special cases which make it hard
to express a correct algorithm in imperative terms. Worse, new hardware (whether
system boards or devices) appears all the time, and system software must continue to
work, or evolve to handle new cases with a minimum of disruptive engineering effort.

In this section, we describe the PCI programming challenge in detail. We start with
the “idealized” problem, which appears relatively straightforward, and progressively
introduce the complexities that, combined, are the reason that even modern operating
systems only partially solve the problem.

2.1. PCI Background

A PCI (or PCI Express) interconnect is logically one or more n-ary trees whose internal
nodes are bridges and whose leaves are devices [Budruk et al. 2004; PCI-SIG 2009].
The root of each tree is known as a root bridge or root complex. Connections in the tree
are known as buses (in legacy PCI they are electrically buses, whereas in PCI Express
the bus is a logical abstraction over point-to-point messaging links). Nonroot bridges
are said to link secondary buses (links to child bridges and devices) to a primary bus
(the link to the bridge’s parent). High-end PCs often have two or four root complexes,
and hence multiple PCI trees within a single system. Nonroot devices can be attached
to any bus in a PCI interconnect. Each device implements one or more distinct func-
tions. A PCI “function” is in fact what we think of an independent “device” which
has its own bus address represented by the bus number, the device number and the
function number and which operates independently of other functions.

Driver software on host CPUs accesses PCI functions by issuing memory reads and
writes or (in the case of the x86 architecture) I/O instructions. These requests are
routed down the tree by the bridges, before being decoded by a single leaf device. Each
function decodes a portion of the overall memory and I/O address spaces using a map-
ping that is configured by the host system through standard PCI-defined registers on
each bridge and function.

Each function of a nonbridge device may decode up to 6 independent regions of
either memory or I/O address space. These regions are defined and configured by
base address registers (BARs) implemented by each function. The PCI driver queries
each BAR to determine its required size, alignment, address space (memory or I/O),
and, in the case of a memory-space BAR, whether the memory is prefetchable or non-
prefetchable, and then reprograms the same registers to allocate definite addresses.
Although it goes against strict PCI terminology, in the rest of this paper we will
use “device” to denote a PCI function, that is, a single logical device with up to
6 BARs.

Bridges also decode addresses to route requests between their parent and secondary
buses. Unlike other devices, however, bridges use three pairs of base and limit regis-
ters instead of BARs, one each for prefetchable memory, non-prefetchable memory, and
I/O space. Each bridge therefore decodes 3 independent, contiguous regions of IO or
memory address space. The addresses used by every device below a bridge (including
bridges on secondary buses) must lie within these three regions.

In summary, a host CPU accesses a PCI device by issuing a transaction on the sys-
tem interconnect with a physical address that lies in a region decoded by the root
bridge of the corresponding PCI tree. This is routed down the tree by bridges; at each
level, each bridge on a bus compares the address issued by the CPU to the ranges
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Fig. 2. Alternative PCI configurations (only memory space resources are shown).

defined by its base and limit registers. If it matches, the bridge forwards the re-
quest to its secondary bus. Each device on a bus compares the address to the re-
gions defined by its BARs, and if the address matches, consumes it and generates a
reply.

The PCI programming problem is to configure the base and limit registers of every
bridge, and the BARs of every device function, to allow all the hardware registers for
every device to be accessible from a CPU. As Figure 2 shows, this can be achieved in
many different ways, leading to different usage of the available physical address space
and different device locations in that space.

We can now specify the requirements for any PCI programming solution, starting
with the basic properties of a solution in the “ideal” case, and progressively refining
the list by adding real-world complications.

2.2. Basic PCI Configuration Requirements

Every bridge in a correctly-configured PCI tree decodes a subrange of the addresses
visible on its parent bus. In order for all devices behind a bridge to be reachable, PCI
requires that:

(1) The bridge window, defined by its base and limit registers, must include all address
regions decoded by all devices and bridges on the secondary bus.
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In order that a request is forwarded by at most one bridge, sibling bridges sharing a
bus must decode disjoint address ranges. Since a bus may contain both bridges and
devices, all bridges and devices on a given bus must decode disjoint address ranges
within the range of the parent bridge. This applies in all of the address spaces.

(2) Bridges and devices at the same tree level (siblings) must not overlap in either
memory or I/O address space.

(3) The prefetchable and non-prefetchable memory regions decoded by a bridge or de-
vice must not overlap.

Regions of addresses in PCI must also be aligned. For a BAR, the base address must be
“naturally” aligned at a multiple of the region’s size. Similarly, a bridge’s base and limit
registers also have limited granularity, giving us the following alignment constraints:

(4) BAR base addresses must be naturally aligned according to the BAR size.
(5) Bridge base and limit register values for both memory regions must be aligned to

1MB boundaries.
(6) Bridge base and limit register values for the I/O region must be aligned to 4kB

boundaries.

These requirements constrain the possible locations of device BARs and child bridge
base and limit registers within the region decoded by the parent bridge, potentially
leading to gaps in address space for padding, as in Figures 2(a) and 2(b).

As described so far, configuring a PCI tree is a nontrivial problem, but it can still
be efficiently programmed by, for example, executing a post-order traversal of the PCI
tree, sorting devices and bridges by descending alignment granularity, and allocating
the lowest suitable address range in the appropriate address space at each step. Un-
fortunately, requirements like the need to align region addresses make it nontrivial to
generate configurations that make efficient use of address space, and the simple post-
order traversal results in a solution like that in Figure 2(a) where large padding holes
need to be inserted between devices.

We now progressively list the additionally complications that make an imperative
solution to this problem a considerable programming challenge.

2.3. Non-PCI Devices

The first complication is that certain non-PCI devices and hardware registers ap-
pear at fixed physical memory addresses inside the region allocated to a PCI root
complex: for example, IOAPICs and other “platform” devices on PC systems. The
presence and location of these devices vary from machine to machine and may be
discovered through platform-specific mechanisms such as ACPI [Hewlett-Packard,
Intel, Microsoft, Phoenix, Toshiba 2010]. For correct operation, no PCI device should
be configured to decode such an address region.

(7) Devices must not decode reserved regions of physical address space given by, for
example, ACPI, or used by other known non-PCI devices such as IOAPICs.

2.4. Fixed-Location PCI Devices

Some PCI devices may be initialized and enabled by platform firmware at early boot
time, for example USB controllers, network interfaces, or other boot devices. Naı̈vely
reprogramming the BARs of such devices may lead to machine check exceptions or
crashes since the device may be active, and performing DMA operations. Most operat-
ing systems avoid reprogramming the BARs of such devices, which means that their
existing address assignment must be preserved. This further constrains the address
ranges usable by parent bridges.
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Table I. Changes to Linux quirks.c

Year Number of commits
2005 26
2006 47
2007 49
2008 43
2009 42
2010 23

(8) Certain PCI devices determined at boot cannot change location, and must retain
addresses assigned to them by the BIOS.

2.5. Quirks

Hardware has bugs, and both devices and bridges can report incorrect information,
fail to support valid resource assignments, or behave incorrectly when specific regis-
ter values are programmed. These problems are known as PCI “quirks” and affect
a wide range of shipping devices—the Linux 2.6.34 kernel lists 546 quirks—leading
to a collection of workarounds in commodity operating systems. As Table I shows,
in the Linux kernel there have been between 20 and 50 commits to the file quirks.c
(which contains workarounds for buggy or otherwise anomalous PCI devices) every
year since 2005. Since new hardware appears every year, and does not seem to be
any less complex or buggy with time, we expect this trend to continue and therefore a
clean, portable, maintainable, and easily evolvable way to handle quirks in software is
desirable.
The PCI quirks currently handled by the Linux kernel mostly fall into several
categories:

— devices that provide incorrect information about their identity as bridges or
nonbridges;

— devices which decode more address range than advertized, or which decode address
regions not assigned to them;

— standard devices which are hidden by platform firmware, but which could otherwise
be normally used;

— undefined device behavior (data loss on the bus, reduced bandwidth, system hangs,
etc.) when particular (and otherwise valid) values are written to the device’s config-
uration registers.

In the latter case, the PCI configuration process must ensure the problematic regis-
ter values are never written, which imposes additional constraints on valid address
assignments.

(9) Configurations that would cause problematic values to be written to registers on
specific devices must be avoided.

(10) Incorrect information from PCI discovery must be corrected before calculating
address assignment.

A further complication arises from abiguity as to whether some hardware is a PCI
device or not. For example, on some (but not all) contemporary PC systems, IOAPIC
registers appear to software as the BAR of a PCI device, but the IOAPIC is also defined
as a “platform device” whose location in the physical address space can also be config-
ured using other mechanisms (such as registers in the south bridge or memory con-
troller hub), or in some cases may not be changed as this would violate assumptions in
firmware such as ACPI. On such systems, the BAR corresponding to the IOAPIC must
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be programmed with a fixed value to ensure it is consistent with other assignments of
the address.

We can summarize this as follows.

(11) Certain platform devices appearing within a BAR of a regular PCI device or
bridge must be treated as PCI devices with fixed a address requirement.

2.6. Device Hotplug

Hotplugging, the addition or removal of PCI devices at runtime, raises another chal-
lenge. When a device is plugged in, the OS is notified by an interrupt from the root
bridge, and must allocate resources to the BARs of the newly-installed device before it
can be used. However, this may require reconfiguring and/or moving the address al-
location of bridges and other devices in order to make enough address space available
for the device, since it was not present at system boot.

Changing the resource allocation of existing devices requires the driver to temporar-
ily disable the device, potentially saving its current state first. After the new resources
are programmed to the BARs, the driver needs to restart the device using the newly
allocated resources. Depending on the device, it may need to bring the device to the
saved state.

This is a disruptive process and, worse still, may not be supported by all devices, so
the reallocation of resources which occurs on hotplug typically attempts to move the
fewest possible existing devices and bridges.

(12) Configuration should minimize the disruption caused by future hotplug events as
much as possible.

(13) Hotplug events should cause the minimal feasible reconfiguration of existing de-
vices and bridges.

(14) Hotplug-triggered reconfiguration may not move devices whose drivers do not
support relocation of address ranges.

2.7. Discussion

It should by now be clear that PCI configuration is a somewhat messy problem char-
acterized by a large (and growing) number of hardware-specific constraints which
nonetheless have effects which propagate up and down the PCI tree. Consequently,
most “clean” solutions written imperatively in a language like C sooner or later fall
foul of an exception which can greatly complicate the code, compromise its correctness,
reduce the efficiency with which it can manage physical address spaces, and in some
cases prevent it from supporting the full PCI feature set.

Most current operating systems, including Linux [Rusling 1999; TJworld 2008] and
FreeBSD [Baldwin 2010] on x86-based platforms, rely on platform firmware (BIOS or
EFI) to allocate resources to most devices before the OS starts, and then run one or
more post-allocation routines [Baldwin 2009] to correct any problems in the allocation,
allocate resources to devices left unconfigured by the firmware, and handle known
quirks as devices are discovered and started.

This approach cannot guarantee success (though it often works): if a bridge is pro-
grammed with an address region that is too small to allocate all the devices behind it,
there may be no way to grow the size of the bridge’s address region without moving
other bridges, and thus some devices behind the bridge will be rendered unusable de-
spite sufficient address space being available overall. This problem is exacerbated by
device hotplug, as it is impossible to predict at start-up the required size of all devices.

Even so, this simplistic allocation strategy leads to substantial code complexity: the
complete PCI drivers of x86 Linux and FreeBSD account for approximately 10k and

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 5, Publication date: February 2012.



A Declarative Language Approach to Device Configuration 5:9

6.5k lines of C code respectively, and device-specific quirks account for an additional
3k lines of code in Linux.

On hardware platforms other than x86 (such as Alpha/AXP), the firmware does not
implement PCI configuration, and Linux instead performs a complete allocation using
a greedy approach: devices are sorted by their requested size in ascending order, and
resources allocated for each device in that order [Rusling 1999]. This can also lead
to unusable devices behind a bridge, due to a suboptimal ordering of devices causing
a shortage of address space. Note also that very little code is shared between this
implementation and that for the PC platform: bug fixes or feature enhancements for
one architecture may not be easily applied to another.

Until recently, Microsoft Windows used a similar strategy to x86 Linux and
FreeBSD for PCI configuration, running a fix-up procedure to correct deficiencies in
the firmware allocation. As with Linux and FreeBSD, this was unable to resize or
change the address regions decoded by bridges, leading to potentially unusable de-
vices [Microsoft 2006]. Windows Vista and Server 2008 introduced a new re-balancing
algorithm [Microsoft 2003b], allowing a bridge’s resources to be modified according to
the needs of its secondary bus, and increasing the likelihood that all PCI devices could
be configured. However, this requires additional driver support for rebalancing, and
the iterative approach can lead to highly complex multi-level rebalancing. Multilevel
rebalancing is a potentially complex operation because increasing a bridge’s window
size can require the bridge to be moved to a new address region, in turn requiring more
space from the parent bridge due to address alignment constraints. In the worst case,
multilevel rebalancing can lead to a complete permutation of the PCI tree.

3. PCI RESOURCE ALLOCATION

The previous section detailed the PCI configuration problem and current approaches
to solving it. In this section, we describe our implementation of PCI configuration in
Barrelfish, and in the following Section 4, a solution to the closely related problem of
interrupt allocation, before evaluating both in Section 5.

Barrelfish [Barrelfish Team 2010; Baumann et al. 2009] is a research operating sys-
tem developed at ETH Zurich and Microsoft Research to address the related problems
of scaling and system diversity in future heterogeneous multicore computers. As such,
it provides a convenient testbed for our ideas.

PCI resource configuration can be viewed as a constraint satisfaction problem. For
a given system the variables are the base address allocated to each device BAR, and
the base and limit of each bridge for each memory region it decodes. A correct solution
may be expressed as an assignment of integer values to these variables satisfying a
series of constraints: alignment, sizes, and nonoverlap of regions.

The difficulty in PCI resource allocation arises from satisfying these complex con-
straints. Such complexity is difficult to manage in a low-level systems language like C,
but fortunately its runtime performance is not critical to the functioning of the system
as a whole. This allows us the freedom to reformulate it in a declarative language,
where the challenge becomes closer to defining what result we require, than how the
result is to be produced.

We implemented the PCI resource configuration algorithm as a constraint logic pro-
gram. This program operates on a high-level data structure representing the PCI
tree, consisting of numeric variables and constraints between them that determine
the possible solutions. Rather than worrying about how to allocate concrete addresses
to bridges and devices, we instead concern ourselves with specifying the correct set of
constraints to guide the CLP solver. We begin by describing the separation between C
and CLP code, before explaining the constraint logic in detail.
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Fig. 3. Boot sequence and steps performed to configure PCI buses using the SKB.

3.1. Approach

We explicitly separate the PCI configuration algorithm, expressed in CLP and running
in a user-space service, from the register access and device programming mechanisms,
implemented in the usual C code as part of the PCI subsystem of the OS. This has sev-
eral advantages. First, it decouples the details of the configuration algorithm from the
device access code, allowing us to exchange and evolve the algorithm independently
of the device access mechanisms. Second, the algorithm is expressed only in terms of
the generic PCI bus; all architecture-specific details are confined to the device access
code, or to quirks expressed independently of the main logic. This makes the allo-
cation algorithm portable, because it only operates on high-level facts about the PCI
devices, bridges and memory regions. Finally, the device programming code written in
C remains small, simple and robust, reducing the likelihood of bugs.

The CLP code is loaded and executed in the system knowledge base [Schüpbach
et al. 2008]. The SKB is a user-space service with an embedded CLP solver based on
the open source ECLiPSe CLP system. It provides a central service for storing high-
level facts about hardware in general (not only PCI), and also about software states
and requirements. Within the SKB, different CLP programs can be run to make sense
of the stored facts. The Barrelfish boot procedure starts the SKB as one of the first
user-space services to make it available for other services and applications. This is
possible because the SKB is a statically linked and completely self-contained service
which runs from an initial RAM disk image containing all necessary files. It is passive
and event-driven, responding to requests from clients such as the PCI driver.

Figure 3 shows the steps performed to configure the PCI bus using the declarative
algorithm running in the SKB. We refer to this figure below when we explain the steps
taken during configuration of the PCI bus.

After starting the SKB, Barrelfish loads the PCI driver. The first step taken by the
PCI driver is setting up a connection to the SKB. Once this is established, the PCI
driver performs device discovery as the first real step in configuring the PCI bus (step
1 of Figure 3). The location of root bridges is determined by platform-specific mecha-
nisms such as ACPI [Hewlett-Packard, Intel, Microsoft, Phoenix, Toshiba 2010]. The
driver then walks the entire bus hierarchy, determining the complete set of bridges,
devices and BARs that are present by reading out PCI registers. During this step it
also assigns bus numbers to un-numbered bridges and disables address decoding such
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that the newly computed addresses can later be safely programmed. As part of this
pass, the PCI driver inserts high-level Prolog facts in the SKB (step 2 in the figure).
These facts describe the set of present bridges, devices and BARs, according to the
following schema:

rootbridge(addr(Bus, Dev, Fun),
childbus(MinBus, MaxBus),
mem(Base, Limit)).

bridge(pcie | pci,
addr(Bus, Dev, Fun),
VendorID, DevID, Class, SubClass,
ProgIf, secondary(BusNr)).

device(pcie | pci,
addr(Bus, Dev, Fun),
VendorID, DevID, Class, SubClass,
ProgIf, IntPin).

bar(addr(Bus, Dev, Fun),
BARNr, Base, Size,
mem | io,
prefetchable | non-prefetchable,
64 | 32).

These facts encode all information needed to run the PCI configuration algorithm. A
root bridge is identified by its PCI configuration address (bus, device and function
number), the range (minimum and maximum) of bus numbers of its children, and its
assigned physical memory region. Bridges and devices are identified by their address,
and carry standard identifiers for their vendor, device ID, device class and subclass,
and programming interface. A bridge also includes the bus number of its secondary
bus, and a device includes the interrupt pin which it will raise (which is used by the
interrupt allocation routines described in Section 4). Finally, for each BAR we store its
base address (which may have been previously assigned by firmware), required size,
region type, and whether it is a 64-bit or 32-bit BAR.

After creating the facts, the PCI driver causes the SKB to run the configuration al-
gorithm to compute a valid allocation (step 3 in Figure 3). The initialization algorithm
we use is described in the following section. Its output is a list of addresses for every
device BAR and every bridge, which can be directly programmed into the correspond-
ing registers by the driver. For example:

buselement(device, addr(6,0,0), 0, 0xC0000000, 0xD0000000,
0x10000000, mem, prefetchable, pcie, 64),

buselement(bridge, addr(0,15,0), secondary(6), 0xB0100000,
0xD0000000, 0x1FF00000, mem, prefetchable, pcie, 0).

In this example, the 64-bit PCIe device at bus 6, device 0, function 0 requests a physical
address range of 256MB in prefetchable memory space for BAR 0. The base allocated
to the device is 0xC0000000 and the limit will thus be 0xD0000000. The bridge at
which the device is attached has a base of 0xB0100000 and a limit of 0xD0000000 in
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the prefetchable memory space, clearly including this device (along with others, not
shown here).

In step 4, the PCI driver reads the result back from the SKB. It takes the addresses
and BAR numbers as well as bridge base and limit values from the output, and pro-
grams the specified registers (step 5). While reprogramming devices and bridges, they
are disabled to prevent transient address conflicts.

Once reprogramming is complete, the bus is fully configured and device drivers can
be started. Additionally, the allocation result is stored in the SKB for later use. When-
ever a device driver for a specific device gets started, it needs to know the base ad-
dresses assigned to the BARs of this device. This can easily be queried from the SKB.
Hotplugging (see Section 3.4) is another reason to store the result for later use in in-
cremental allocation of new devices.

3.2. Formulation in CLP

We now turn to the configuration algorithm in constraint logic. For simplicity, we
describe here how we allocate prefetchable and non-prefetchable memory regions; al-
location of I/O space proceeds in a similar manner with some minor differences.

The first step is to convert the facts generated by the PCI driver to a suitable data
structure, and declare the necessary constraint variables. The data structure used is
a tree mirroring the hardware topology, whose inner nodes correspond to bridges, and
leaf nodes to device BARs or other unpopulated bridges. The constraints are then nat-
urally expressible through recursive tree traversal. The variables of the CLP program
are the base address, limit and size of every bridge and device BAR, and the relation-
ship between them may be expressed by the constraint Limit $= Base + Size, which
we later apply.

At a high-level, our algorithm performs the following steps for each PCI root bridge.

(1) Convert bridge and device facts for the given root bridge to a list of buselement
terms, while declaring constraint variables for the base address, limit and size of
each element.

(2) Construct a tree of buselement terms, mirroring the PCI tree.
(3) Recursively walk the tree, constraining the base, limit and size variables according

to the PCI configuration rules and quirks.
(4) Convert the tree back to a list of elements.
(5) Invoke the ECLiPSe constraint solver to compute a solution for all base, limit and

size variables satisfying the constraints.

The core logic of the algorithm resides in step 3, and we implement this by a direct
translation of the rules described in Section 2.2 to constraint logic, as described in the
following sections.

Bridge windows. Rule 1 states that all bridge windows must include all address re-
gions decoded by devices and bridges attached to the secondary bus. This means that
the bridge’s memory and IO base addresses must be smaller or equal to the smallest
base of any bridge or device on the secondary bus, and the corresponding limits must
be greater than or equal to the highest address used by any device or bridge on the
secondary bus.

Although at this stage we do not yet have concrete values for the relevant base and
limit variables, CLP allows us to constrain them using a recursive walk of the tree,
implemented as shown below.
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Note that a tree is expressed as t(Root,Children), where Root is the root node, and
Children is a (possibly empty) list of child trees – ECLiPSe uses conventional Prolog
syntax whereby identifiers starting with an uppercase character (e.g. Node) denote
free variables, and all others denote constants. Also note the ECLiPSe operations
ic global:sumlist, ic:minlist, and ic:maxlist which operate on lists of constraint
variables that may not have a concrete value assigned, allowing complex constraints
to be introduced between them.

setrange(Tree,SubTreeSize,SubTreeMin,SubTreeMax) :-
% match Tree into current node and list of children
t(Node,Children) = Tree,
% match node to get its base, limit and size variables
buselement( , , ,Base,Limit,Size, , , , ) = Node,

% recursively collect lists of sizes, minimum and
% maximum addresses for children of this node
( foreach(El,Children),
foreach(Sz,SizeList),
foreach(Mi,MinList),
foreach(Ma,MaxList)
do
setrange(El,Sz,Mi,Ma)

),

% compute sum of children’s sizes as SizeSum
ic global:sumlist(SizeList,SizeSum),
% constrain the size of this node >= SizeSum
Size $>= SizeSum,

% if there are any children...
( not Children=[] ->

% determine min base and max limit of children
ic:minlist(MinList,Min),
ic:maxlist(MaxList,Max),
% constrain this node’s base and limit accordingly
Min $>= Base,
Max $=< Limit

; true
),

% constrain this node’s limit
Limit $= Base + Size,

% output values
SubTreeSize $= Size,
SubTreeMin $= Base,
SubTreeMax $= Limit.

setrange([],0, , ). % base case of recursion

Nonoverlap of bridges and devices. Rule 2 states that siblings must not overlap at
any level of the tree. In other words, all regions allocated to bridges and devices
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at the same level must be disjunctive. The following goal ensures this, by making use
of the disjunctive constraint, originally intended for task scheduling, which ensures
that regions specified as lists of base addresses and sizes do not overlap:

% convenience functions / accessors
root(t(R, ),R).
base(buselement( , , ,Base, , , , , , ),Base).
size(buselement( , , , , ,Size, , , , ),Size).

nonoverlap(Tree) :-
% collect direct children of this node in ChildList
t( ,Children) = Tree,
maplist(root,Children,ChildList),

% if there are children...
( not ChildList=[] ->

% determine base and size of each child
maplist(base,ChildList,Bases),
maplist(size,ChildList,Sizes),

% constrain the regions they define not to overlap
disjunctive(Bases,Sizes)

; true
),

% recurse on all children
( foreach(El, Children) do nonoverlap(El) ).

Nonoverlap of prefetchable/non-prefetchable memory. Rule 3 requires that prefetchable
and non-prefetchable regions do not overlap. The two regions do not need to be con-
tiguous. We implemented this by inserting an artificial level in the top of the tree
containing two separate bridges, one with all prefetchable memory ranges and an-
other with all non-prefetchable memory ranges of the tree. This gives some freedom
to the solver, because the order of the two regions is not explicitly specified by our
allocation code, and allows the previously-described logic to operate independently of
memory prefetchability. Treating the two regions as completely separate trees causes
the prefetchable and non-prefetchable window of every bridge to be at completely dif-
ferent locations, which is fine.

Alignment constraints. Rules 4, 5 and 6 require a specific alignment for devices and
bridges. In the following, we constrain the alignment of each element, using natural
alignment for device BARs, and a fixed alignment for bridge windows (e.g., 1MB in
the case of memory regions).

naturally aligned(Tree, BridgeAlignment, LMem, HMem) :-
t(Node,Children) = Tree,

% determine required alignment for bridge or device BAR
( buselement(device, , ,Base, ,Size, , , , ) = Node ->

Alignment is Size; % natural alignment
buselement(bridge, , ,Base, , , , , , ) = Node ->
Alignment is BridgeAlignment % from argument
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),

% constrain Base mod Alignment = 0
suspend(mod(Base, Alignment, 0), 0, Base->inst),

% recurse on children
( foreach(El, Children),

param(BridgeAlignment), param(LMem), param(HMem)
do naturally aligned(El, BridgeAlignment, LMem, HMem)

).

Reserved regions. Rule 7 requires that reserved memory regions are not allocated to
PCI devices. In other words, memory regions allocated to PCI devices should always
be disjunctive with any reserved region. The following goal ensures this requirement,
by recursively processing a list of bus elements against a list of reserved memory
ranges, specified as range(Base,Size) terms:

% recursive stopping case
not overlap mem ranges([], ).

% bridges may overlap: no special treatment
not overlap mem ranges([buselement(bridge, , , , , , , , , )|T], MemRanges) :-

not overlap mem ranges(T, MemRanges).

% device BARs match this pattern
not overlap mem ranges([H|T], MemRanges) :-
% for each reserved memory range...
( foreach(range(RBase,RSize),MemRanges), param(H)
do
% match base and size variable from bus element
buselement(device, , ,Base, ,Size, , , , ) = H,
% constrain this BAR not to overlap with it
disjunctive([Base,RBase], [Size,RSize])

),
% recurse on list tail
not overlap mem ranges(T, MemRanges).

Fixed-location devices. We must also avoid moving various initialized boot devices, as
in Rule 8. The following goal shows one such example: given a device class (specified
by its class, subclass and programming interface identifiers) that should not be moved,
it constrains the possible choice of the base address to the one value which is its initial
allocation.

keep orig addr([], , , ).
keep orig addr([H|T], Class, SubClass, ProgIf) :-
( % if this is a device BAR...
buselement(device,Addr,BAR,Base, , , , , , ) = H,
% and its device is in the required class...
device( ,Addr, , ,Class, SubClass, ProgIf, ),
% lookup the original base address of the BAR
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bar(Addr,BAR,OrigBase, , , , ) ->
% constrain the Base to equal its original value
Base $= OrigBase
; true

),
% recurse on remaining devices
keep orig addr(T, Class, SubClass, ProgIf).

3.3. Quirks

Declarative logic programming provides an elegant solution to the problem of quirks.
Quirks require us to correct wrong information as well as apply possible extra con-
straints to workaround misbehaving devices. In CLP we can easily define a database of
facts for devices needing special treatment. Those facts are implicitly matched against
the data structure before the configuration algorithm runs, causing incorrect informa-
tion to be corrected, and additional constraints on the allocation to be defined, without
changing any of the core logic of the algorithm.

Rule 11 requires that non-PCI devices appearing as a BAR of a regular PCI
device or bridge are treated like PCI devices with fixed a address requirement. As an
example, on some machines, an IOAPIC appears as a BAR of a PCI device. If this
is the case, the IOAPIC decodes the base address assigned to the BAR rather than
directly using one of the valid predefined base addresses for IOAPICs. In this case
we cannot move the BAR, even if the IOAPIC is not a PCI device. This conflicts with
the core logic of the algorithm, which avoids using all regions assigned to IOAPICs.
In order to handle this quirk, we have to modify the core logic of the algorithm
such that it only avoids using address regions assigned to IOAPICs, if they do not
appear as a BAR. Additionally we have to apply the following extra constraint, which
ensures that IOAPICs appearing as a BAR keep their original base address by calling
keep orig addr on the specific bus, device and function number of the device on which
the IOAPIC claims to be.

keep ioapic bars( , []).
keep ioapic bars(Buselements, [H|IOAPICList]) :-
( % if there is a BAR with the same base as an IOAPIC, then do not move it
range(B, ) = H,
bar(addr(Bus, Dev, Fun), , OrigBase, , , , ),
OrigBase =:= B ->
keep orig addr(Buselements, , , , Bus, Dev, Fun);

true
),
keep ioapic bars(Buselements, IOAPICList).

3.4. Device Hotplug

In principle, the allocation of resources for hotplugged devices can be handled simply
by adding facts for the new device and its BARs, and then re-running the allocation
algorithm. However, this may cause all existing address assignments to change (ex-
cluding those whose location is fixed, as in Section 3.2), and is thus undesirable due
to the performance impact of interrupting running device drivers. A more incremental
approach is desirable.

With PCI Express it is possible to query bridges for hotplug capabilities (i.e.,
whether they have slots to hotplug a device) [Budruk et al. 2004]. To avoid moving as

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 5, Publication date: February 2012.



A Declarative Language Approach to Device Configuration 5:17

many devices and bridges as possible, the initial configuration should leave as many
gaps as possible under bridges with hotplug capabilities. This could be implemented as
an optimization function that maximizes the free space under hotplug-capable bridges.
However, an optimization function considers all possible solutions and takes the one
which maximizes the free space. This would lead to a complete tree permutation and
is therefore too complex and not feasible in a reasonable time.

A more tractable way of creating gaps under hotplug-capable bridges is adding
artificial devices under those bridges while computing the first allocation. Artificial
devices have regular device() and bar() entries with the vendor identifier set to
0xffff to mark the devices as artificial. There will never be a device with this vendor
identifier, since 0xffff means at the register level that no device exists at this bus,
device and function number. The bus part of the device address is set to the secondary
bus number of the bridge with hotplug capabilities. This ensures that the artificial
device belongs to this bridge. The device number has to be unique under every bus,
but can otherwise be an arbitrary number, which does not yet exist on the bus, for
artificial devices. Since we do not know in advance, whether the device will have
BARs in the prefetchable, non-prefetchable or I/O space, we have to create one BAR
in each of the three spaces. The following example shows an artificial device under a
hotplug-capable bridge:

% the bridge with a hotplug-capable slot under it
bridge(pcie, addr(3, 0, 0), 0x1033, 0x125, 6, 4, 0, secondary(4)).

% artificial device with vendor set to 0xffff and all other field to 0
device(pcie, addr(4, 3, 0), 0xffff, 0, 0, 0, 0, 0).

% three small BARs, one in each space
bar(addr(4, 3, 0), 0, 0, 8192, mem, prefetchable, 64).
bar(addr(4, 3, 0), 0, 0, 8192, mem, non-prefetchable, 32).
bar(addr(4, 3, 0), 0, 0, 256, io, non-prefetchable, 32).

The space occupied by artificial devices can later be used for real devices hotplugged
under a bridge. When a device is hotplugged it is straightforward to check whether
there is enough free space available under the bridge. If this is the case, resources can
directly be allocated. The allocation under this bridge needs to follow the same rules
as the first allocation, for example, the address has to meet the alignment requirement
of the newly hotplugged device. Nevertheless, as long as the gap is large enough a sim-
plified, incremental algorithm for local resource allocation can apply the constraints to
the newly hotplugged device.

However, since the physical address size requirements of hotplugged devices are
not known in advance, it may still be the case there there is insufficient free address
space under a bridge. In this case we try to extend the local search by moving the
bridge, and in the worst case, a recomputation of the complete allocation is necessary.
Similarly, it is not known in advance whether a newly hotplugged device will have
special requirements such as a fixed address assignment or other hardware quirks. In
these cases a complete reallocation may be necessary.

Adding artificial devices to the PCI tree before computing the first allocation can
be handled well by the allocation algorithm and is less computationally complex than
an optimization problem. Figure 4 shows that the CLP solution can deal with an al-
most completely-filled physical address region. This means that the available space
can almost be filled completely with artificial devices to provide space for later hot-
plugs. When creating artificial devices, we first compute the sum of the address size
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requirements of the real devices and fill the available address regions for PCI with
small artificial devices almost completely. With CLP this is particularly easy, because
the artificial devices are placed around the real ones. Moreover, the CLP solution is
well-placed to handle complex reconfigurations that may be required by device hot-
plug, as it specifies the complete set of feasible configurations which will be explored
by the solver. Section 5.6 presents the results of a benchmark showing the theoretical
limits of the CLP approach in handling device hotplug, in comparison to a traditional
postorder traversal.

4. INTERRUPT ALLOCATION

We now move from PCI bus configuration to the closely related problem of interrupt
allocation, which we have also implemented in CLP, and which is also evaluated in
Section 5.

4.1. Problem Overview

Interrupts are another important resource that must to be allocated to devices by the
OS. Most PCI devices can raise one or more interrupts. To avoid shared interrupt
handlers, the OS should try to allocate unique interrupt vectors to every device. Mod-
ern systems, and some modern devices, support message signaled interrupts (MSIs).
These map interrupts into the physical address space, and therefore the only require-
ment is choosing a different interrupt address for every device. However many sys-
tems and many PCI devices do not yet support MSIs, and thus correctly and efficiently
configuring PCI interrupt allocation remains a critical OS task.

Each PCI device signals interrupts by asserting one of up to four available interrupt
lines (INTA, INTB, INTC and INTD, represented in our solution as the integers 0–3).
On PC-based platforms, these signals are routed via PCI bridges and configurable link
devices to global system interrupt numbers (GSIs). This routing is encoded in and
configured via platform firmware, using a set of ACPI tables [Hewlett-Packard, Intel,
Microsoft, Phoenix, Toshiba 2010].

Starting from a given device and interrupt pin, the mapping is determined as fol-
lows.

(1) Consult the ACPI interrupt routing tables for the current bus, device and pin num-
ber. If there is a mapping for the given pin:
(a) If the entry names a GSI, the interrupt line is fixed.
(b) Otherwise, the entry names a link device, and the interrupt is selectable from

set of GSIs.
(2) Otherwise, compute the new interrupt pin on the parent bus, using the formula

(device number + pin) mod 4, and repeat.

The goal of the interrupt allocation code is to assign unique interrupt vectors to every
device. Interrupt sharing is to be avoided wherever possible [Microsoft 2003a]. It can
severely impact performance, since the drivers for devices sharing an interrupt must
essentially poll their devices to determine if the interrupt is for them. Furthermore,
many device drivers do not handle shared interrupts correctly at all. As well as avoid-
ing sharing among PCI devices, specific GSIs are also assigned to legacy (non-PCI)
devices and other system devices, which should also be avoided by the allocation code.

We can summarize the requirements for interrupt configuration as follows.

(1) assign and configure a GSI (possible translated by bridges and link devices) for
every enabled PCI device.

(2) ensure that all allocated GSIs are unique.
(3) avoid reassigning legacy pre-allocated GSIs.
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This problem is not as complex as PCI address allocation, and therefore less trou-
blesome to implement in C. However, there are still some benefits from using CLP:
storing and querying information about possible GSIs and prototyping the algorithm
in CLP is highly convenient, the resulting algorithm is portable across different plat-
forms, and the implementation is concise – ensuring that allocated GSIs are globally
unique can easily be done using the built-in ECLiPSe goal alldifferent (see 4.2). We
therefore implemented Barrelfish interrupt allocation in the SKB.

4.2. Solution in CLP

At start-up, the PCI and ACPI drivers populate the system knowledge base with a fact
for every PCI interrupt routing table entry, mapping a device address and interrupt
pin to a source, using the schema:

prt(addr(Bus, Dev, _), Pin, pir(Pir) | gsi(Gsi)).

These facts include addresses of PCI devices without function number, because the
same mapping applies for all functions on a multi-function device. The interrupt
source is either a name (ACPI object path) identifying the interrupt link device or
a direct GSI number, indicating that this interrupt’s allocation is fixed.

For each link device, pir facts are added describing the possible GSIs that may be
selected for a given device:

pir(Pir, GSI).

In this relation, Pir defines the link device name, and GSI one of the selectable GSIs
for this device (so each link device has multiple facts, one for each configuration).

The CLP code operates on these facts, and the PCI device facts described in the
previous section. At the top-level, it determines the interrupt pin used by a specific
device, and passes it to assignirq to allocate a unique GSI:

assigndeviceirq(Addr) :-
device( , Addr, , , , , , Pin),
% require a valid Pin
Pin >= 0 and Pin < 4,
( % check for an exising allocation
assignedGsi(Addr, Pin, Gsi),
usedGsi(Gsi, Pir)

; % otherwise assign a new GSI
assignirq(Pin, Addr, Pir, Gsi),
assert(assignedGsi(Addr, Pin, Gsi))

),
printf("%s %d\n", [Pir, Gsi]).

assignirq takes the PCI address and interrupt pin for the device as inputs, and
chooses a possible GSI for the device. It uses findgsi (described below) to determine
the available GSIs for the device, and the alldifferent goal to avoid overlaps:

assignirq(Pin, Addr, Pir, Gsi) :-
% determine usable GSIs for this device
findgsi(Pin, Addr, Gsi, Pir),
( % flag value for a fixed GSI (i.e. meaningless Pir)
Pir = fixedGsi

;
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% don’t change a previously-configured link device
setPir(Pir, ) -> setPir(Pir, Gsi)

;
true

),
% find all GSIs currently in use
findall(X, usedGsi(X, ), AllGsis),
% constrain GSIs not to overlap
ic:alldifferent([Gsi|AllGsis]),
% allocate one of the possible GSIs
indomain(Gsi),
% store settings for future reference
( Pir = fixedGsi ; assert(setPir(Pir,Gsi)) ),
assert(usedGsi(Gsi,Pir)).

Finally, the following CLP function matches the device’s address and interrupt pin
with the prt and pir facts to find the possible GSIs (multiple solutions may be found).
If no match is found, it recursively performs bridge swizzling until a routing table
entry matches (which is always true at the root bridge).

findgsi(Pin, Addr, Gsi, Pir) :-
( % lookup routing table to see if we have an entry
prt(Addr, Pin, PrtEntry)

;
% if not, compute standard swizzle through bridge
Addr = addr(Bus, Device, ),
NewPin is (Device + Pin) mod 4,

% recurse, looking up mapping for the bridge itself
bridge( , BridgeAddr, , , , , , secondary(Bus)),
findgsi(NewPin, BridgeAddr, Gsi, Pir)

),
( % is this a fixed GSI, or a link device?
PrtEntry = gsi(Gsi),
Pir = fixedGsi

;
PrtEntry = pir(Pir),
pir(Pir, Gsi)

).

5. EVALUATION

Picking suitable metrics to evaluate a PCI programming solution is something of chal-
lenge. We focus here on code complexity, execution time, and efficiency of resultant
solutions, but some of the evaluation necessarily remains subjective in its comparison
with current approaches, not least because our code is factored rather differently from
traditional approaches and offers different functionality to, for example, PC-based
Linux.

5.1. Test Platforms

We evaluated the PCI configuration and interrupt allocation algorithms on nine dif-
ferent x86 PC and server systems, with a mixture of built-in and expansion devices
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Table II. System Complexity and Execution Times for the
PCI Configuration Algorithm

Devices BARs Bridges Runtime (ms)

sys1 7 11 12 2.0
sys2 13 20 6 14.7
sys3 13 20 6 14.4
sys4 14 22 6 36.4
sys5 12 18 5 10.0
sys6 7 9 6 19.0
sys7 9 14 6 22.2
sys8 15 25 4 6.7
sys9 15 25 4 31.2

including network, storage and graphics cards installed. We refer to these as sys1
through sys9, and show the number of PCI elements they include in Table II. All sys-
tems have two PCI root bridges with the exception of sys1, which has one. Here we
show the totals for the whole system, as our algorithm allocates resources to all PCI
trees in a single invocation.

All of these systems support USB keyboards in the BIOS, and thus the system
initializes the USB controller in firmware at boot time. Consequently, our solutions
implement this fixed device requirement using the keep orig addr constraint from
Section 3.2 to prevent the USB controllers from being reprogrammed, and also avoid
any memory regions marked as reserved by ACPI or in use by IOAPIC devices. The
computation does not include handling other quirks, since our hardware does not ex-
hibit them and consequently does not exercise that part of our CLP code. Our imple-
mentation is successful in configuring all PCI buses and devices on all the test systems.

5.2. Performance

We measured the time for PCI configuration on our test systems, and show the results
in Table II. This time is for the CLP algorithm and does not include the initial bus
walk, nor programming of device registers. As discussed in Section 3, these remain in
C as part of the PCI driver, and the CLP time dominates the overall runtime.

Compared to the performance of a hard-coded allocation in C, which in existing
OSes typically requires less than a millisecond, our solution is substantially slower,
but the additional overhead of 10–30ms is only incurred at boot time or after a hotplug
event, and so is arguably insignificant to the end user. This computation can be run in
parallel with other tasks, and since the PCI configuration changes rarely, the computed
configuration can be cached and reapplied during the next boot process. In those cases,
no additional overhead is added to the boot time.

5.3. Code Size

In this section we compare the complexity, measured in lines of code (LOC), of our
CLP-based approach to the comparable portions of the Linux x86 PCI driver. Such a
comparison can never be precise, and must be preceded by several qualifications.

First, in both cases we consider the code related to PCI resource configuration, inter-
rupt allocation, PCI device discovery, maintenance of the data structures representing
the PCI bus hierarchy, and the corresponding hardware access mechanisms. Second,
we exclude from the Linux figures some PCI-related mechanisms (such as the legacy
PCI BIOS interface) that are currently unsupported by our solution. Third, since we
have currently only implement a single PCI quirk, we exclude the hardware quirk-
handling code, but retain handling of other special cases. Fourth, the functionality
offered by our solution and the Linux code is different: Linux implements the solution
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Table III. Lines of Code in PCI Configuration and
Interrupt Allocation

C LOC CLP LOC
Register access 235
Data structure 817 31
Algorithm 224
ACPI 360
Interrupts 660 28
Miscellaneous 109

Total 2181 283

Table IV. Lines of Code for Equivalent
Functionality in Linux 3.1.6

C LOC

Register access 842
Data structure 2079
Resource management 1243
ACPI 238
Interrupts 718
Miscellaneous 90
Total 5210

that attempts to fix up the initial BIOS configuration, whereas our code does a full al-
location of addresses. Finally, we emphasize that our goal is to reduce the complexity
of the source code and therefore the number of source lines of code, rather than the
number of generated machine statements.

We summarize the results for our solution in Table III and for Linux in Table IV.
The relevant Linux code is located in the kernel in drivers/pci. Overall, our approach
uses 2464 lines of code, compared to 5210 for the pure C-based Linux version.

Breaking this down, we use much less code for reading and writing registers, as our
hardware access is regular and independent of allocation. Building and manipulating
data structures is also simpler for us: representing lists and trees is highly concise in
Prolog, and allows us to build much simpler structures in the C domain, resulting in
about half the code size. We use more code for ACPI, since we explicitly handle ACPI
reserved regions, whereas Linux relies on the BIOS initialization for this. Code for
interrupt assignment is about the same size. Finally, the “core” of the configuration
code (in as much as it can be isolated in the Linux case) is 224 lines of Prolog versus
1243 lines of C.

The largest class of code in both implementations is used for maintaining data struc-
tures. This is because PCI data must be queried from either ACPI or directly from
the hardware, transformed to a meaningful internal representation, and added to a
structure. Finally, configuration proceeds by traversing this structure, accessing and
mutating it. The corresponding data structure in our implementation consists mostly
of Prolog facts which are generated by C but traversed/accessed entirely in CLP, and
thus require fewer lines of code than Linux. Despite being large in size in both sys-
tems, such code is not the most complex in its logic.

The PCI configuration algorithm uses 224 lines of CLP code in our implementation.
This produces a correct and complete allocation, while correctly handling special con-
straints such as avoiding reserved regions and preserving certain device locations. In
comparison, the Linux C implementation uses more lines of code for less functionality
(it does not perform full bus configuration).
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Table V. Memory Overhead

Size

Solver executable (statically linked) 1.5MB
RAM disk 600kB
Dynamically allocated RAM 60MB

Total 62.1MB

Besides the usual benefits arising from a smaller, simpler codebase in terms of
source lines of code, the separation of concerns between low-level hardware-specific
device access code and a high-level declarative resource configuration algorithm
enhances the system’s maintainability and adaptability to changing hardware require-
ments. Complex device- and system-specific constraints, such as quirks, can be incor-
porated without changing the device access code or core algorithm, and it can easily be
ported to other PCI-based platforms. We return to this discussion in Section 6.

5.4. Memory Overhead

In this section we summarize the memory overhead caused by loading the SKB early
in the boot sequence. Because the SKB is not only used to compute PCI resource
allocations, the overhead does not only account for PCI, but can be amortized over
several hardware and system configuration use cases. Nevertheless, we provide the
complete memory overhead here.

Table V shows the breakdown and the total memory overhead of loading the SKB
early in the boot process.

We use a statically linked x86 64 binary so it can be directly executed early in the
boot process before shared libraries and a dynamic linker are available. The RAM
disk includes all Prolog necessary files to start the SKB and to run the PCI resource
allocation algorithm. The 600kB for the disk not only contains user CLP programs
(such as the algorithms), but also the complete CLP core logic and basic Prolog goals,
which are all implemented in CLP itself and stored as precompiled CLP files. Finally,
CLP requires a sufficiently large preallocated heap, used to store facts as well as to
compile, store and run CLP code. Additionally, CLP code creates many temporary
variables and lists during execution on the heap. The 60MB dynamically allocated
RAM is used both for temporary working heap and all hardware-related facts used by
Barrelfish: in addition to PCI data, this includes description of available cores, memory
hierarchy, performance profiles, etc.

5.5. Handling Quirks

An important goal of using a declarative algorithm is maintainability of the code as
well as simplifying of adding new special cases or quirks. These properties can best
be evaluated by showing the number of lines of code that must change when adding a
new special case.

To take one example, consider a new PCI device that does not support the
re-assignment of a new address. Our implementation already contains the goal
keep orig addr(), which ensures that the device retains its original address and there-
fore no re-assignment will happen. It is sufficient to call this goal on the newly-found
device, and this requires one additional line of CLP code to specify the case.

A second example was encountered in the course of writing this paper, and has al-
ready been mentioned in Section 3.3. We encountered a system with a special IOAPIC
that appeared as a BAR, even though it is not a PCI device. In this case, the address in
the BAR must not change during the configuration process. Our implementation did
not contain any goal to handle this special case, and so we had to implement it from
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Table VI. Additional Lines of Code to Handle Additional Special Cases

Special case Goal Part CLP LOC C LOC

No re-assignment keep_orig_addr() impl. - -
call 1 -

IOAPIC as BAR keep_ioapic_bars() impl. 10 -
call 1 -
get IOAPIC list 3 -

Total 15 -

scratch. The small goal keep ioapic bars() shown in section 3.3 completely handles
this case, making use of the already available keep orig addr(). The implementation
only adds ten lines of CLP code. Another line is necessary to call the goal and another
three lines are necessary to prepare the list of IOAPICs.

Table VI summarizes the additional lines of code necessary to handle these two
additional special cases. In CLP handling them is straightforward, because the base
variables can be constrained before having actual addresses assigned. As the table
shows, the C code did not need to change at all.

5.6. Postorder Traversal Comparison

To evaluate the quality of the solutions found, we investigated how they compare to the
style of simple postorder traversal used in current operating systems. When allocating
resources to a device tree where the size of each device is known in advance, one might
expect this approach to be sufficient. We first describe why that is not the case, and
then show experimentally the advantage of a declarative CLP solution against such a
traversal.

Starting with the base address given by the root bridge, such an algorithm traverses
down the leftmost branch of the tree first, assigning the current base address to each
bridge and finally the leftmost leaf device, while satisfying alignment constraints. For
each device allocation, the device size is added to the base value, plus any padding
required for alignment. The algorithm next traverses all child devices of the bridge,
before moving up the tree to the next-upper parent bridge, and updating the bridge’s
limit register in the process, before continuing with the remaining devices and bridges.

Such an algorithm can be simply described and implemented. It ensures that all
bridges are allocated a window including their children and that alignment constraints
are satisfied. However, the algorithm is insufficient for PCI configuration for two
reasons:

(1) It fails to include constraints that require keeping devices at a fixed address. This
requires all parent bridges to decode the fixed device window. Because all parent
bridges have to decode a fixed address, all children of every bridge decoding a fixed
address have to be placed close to a predetermined address region. This cannot be
easily expressed in a postorder traversal of the device tree.

(2) Satisfying alignment constraints leads to potentially large amounts of address
space wasted in padding, preventing successful configuration when not all devices
fit into the root bridge’s address range.

To learn how our CLP-based algorithm behaves in the limit as resources are consumed
by additional devices, we stressed the configuration algorithm in an offline experiment
by adding progressively more devices and bridges to a simulated PCI system. Starting
with zero devices and bridges, we added either a device or a bridge on every round and
measured the consumed resources by the configuration derived by the algorithm. This
scenario is not purely artificial, because it simulates what can happen when devices
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Fig. 4. Address space utilization of CLP algorithm vs. simple postorder traversal as devices and bridges
are added to a simulated system. The CLP algorithm reorders devices as needed, exactly following the
DeviceSum line, which shows the lower bound. The postorder traversal, which sorts the devices according
to size, cannot fit the PCI tree into the given root bridge window. Vertical lines indicate when a new bridge
is added; the horizontal line indicates the maximum size of the root bridge window.

are hotplugged. We compared our CLP-based algorithm with an improved postorder
traversal algorithm, which sorts devices according to their requested size in ascending
order. The results are shown in Figure 4.

The horizontal line Root size (max) indicates the given root bridge window size,
which must not be exceeded for a successful configuration. The vertical lines in the
figure indicate where a bridge has been added to the PCI tree. The DeviceSum line
indicates the sum of the requested size of all installed devices without padding or
alignment constraints; this is the absolute lower bound of address space utilization.
The data points indicate the address space consumption after having added the next
device.

The figure shows that our CLP-based allocation algorithm exactly follows the de-
vice sum. Its constraints give it the freedom to reorder bridges and devices, so that no
address space is wasted for alignment constraints and a solution can always be found.
The best postorder traversal algorithm, which does not respect fixed device require-
ments, nevertheless cannot fit the devices into the given root bridge window beyond
80% utilization, indicating that such a simple approach has limitations in general.

5.7. Comparison to Other Search Strategies

Finding solutions to a given problem with a large search space is difficult in general
and can be tackled by using different search strategies. CLP belongs to the exact
search class. It considers every solution and outputs all of them, if requested. By
propagating constraints early before enumerating all solutions, the search space can
be reduced significantly.
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To compute a valid PCI resource allocation, we only need a feasible solution, such
that all PCI allocation rules and special requirements are satisfied. Finding a feasible
solution does not necessarily requires to consider every possible solution. This implies
that an exact search method is not required. One representative of a non-exact search
method is a genetic algorithm. Genetic algorithms are good at handling large search
spaces and finding solutions within them. A randomized search of a valid PCI alloca-
tion using a genetic algorithm is sufficient. To compare our exact CLP search method
to a randomized one, we implemented the PCI allocation using a genetic algorithm.
We started by implementing the basic rules without handling special constraints to
learn how well a genetic algorithm behaves for PCI allocation. We added some inline
improvements to detect infeasible solutions early and avoid that only the fitness func-
tion detects these in the last step. For example, while randomizing base addresses we
ensure only naturally aligned addresses can be chosen.

We run the algorithm on the same input values as used for our CLP algorithm.
The genetic algorithm was indeed able to find valid allocations. However it took up
to several minutes to output the first solution, which we view as impractical for PCI
allocation at boot time of an OS.

6. DISCUSSION

We set out to evaluate declarative languages as a way of expressing hardware con-
figuration algorithms, as part of a wider project to build a new operating system for
heterogeneous multicore systems. Our hypothesis was that such an approach would
reduce the complexity of the code we would have to write, and in the long term would
provide a good foundation for reasoning about the complexity and heterogeneity of
modern and future hardware.

Our experience so far has been mostly positive, but not without challenges. In this
section we describe both the advantages and disadvantages of the approach that we
have encountered, before discussing the conditions that make a resource allocation
problem suited to CLP, and providing advice for developing a CLP-based solution.

6.1. Advantages

Clear policy/mechanism separation. Maintaining a sharp distinction between, on the one
hand, the algorithm used to find a suitable hardware configuration and, on the other,
the mechanism to configure the hardware by writing values to registers has a number
of strong benefits.

First, the algorithm can be clearly understood in isolation from hardware access,
making it easier to both debug and maintain. Indeed, much of the debugging, test-
ing, and evaluation of our PCI programming code was carried out “offline” in a vanilla
ECLiPSe running on Linux using PCI configurations obtained from a variety of ma-
chines around our lab, before being put into service at boot time in Barrelfish. It
is also useful to be able to test this code by writing correctness conditions in Prolog
which are then validated automatically.

Second, the hardware access code is simplified, since it is no longer threaded
through the configuration algorithm. Verifying (by inspection) that the C code cor-
rectly accesses PCI devices and bridges becomes a simpler task, and the chances of
breaking this code when changing the configuration algorithm itself reduced to almost
zero.

Separation of special cases. PCI quirks, fixed PCI devices, reserved non-PCI address
ranges, and the like can be handled entirely in the declarative domain through Prolog
statements, and do not pollute the C register access code.
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Moreover, adding new quirks or special cases can be done simply by adding such
cases as assertions to the declarative specification of the algorithm, without modifying
the mainline algorithm code in any way.

For the most part, additional constraints are one-line references to existing func-
tions, and hence easy to add to the system. It is often sufficient merely to add a de-
vice’s ID to a list, which is passed to a function applying a specific constraint to the
elements. All of this results in a clear separation within the declarative code between
special cases and the solution description.

Flexibility of data structures. Device information in traditional operating systems is typ-
ically represented by a set of simple, ad-hoc data structures (tables, trees, hash tables)
whose design is determined largely (and rightly so) by performance concerns in the
kernel. In our approach we retain such structures where needed on the fast path, but
represent most of the hardware information as facts in the logic language.

This greatly facilitates reasoning about the information in ways not foreseen at
design time. For example, information from ACPI about non-PCI device locations can
be transformed easily into regions of memory reserved from the normal PCI allocation
process. The logical unification mechanism provided in languages like Prolog makes
this expressible in a single rule. Furthermore, this representation can be changed over
time without concern for disturbing critical kernel code.

Late-binding of algorithm. ECLiPSe allows for adding new functionality as well as re-
placing functionality at runtime. This feature provides considerable flexibility. In the
concrete case of PCI programming, we can run the normal allocation algorithm for
a complete allocation and later, at runtime, load an allocation algorithm more suited
to hotplug scenarios. Whether the algorithm is replaced at runtime or boot time, the
mechanism code to access the hardware need not change.

Platform independence. As we have mentioned, PCI code in Linux varies almost com-
pletely between, for example, the x86 and Alpha/AXP platforms. In contrast, in our
approach the configuration logic is identical across all architectures using PCI. What
changes is the register access code in C; for example, most non-x86 architectures re-
place I/O instructions with memory-mapped I/O. This makes our code highly portable.
Furthermore, only short mechanism code has to be ported, reducing the chance of in-
troducing bugs when porting.

Reuse of functionality. While CLP may be regarded as a somewhat heavyweight ap-
proach (see below), the functionality provided is close to that required by many other
parts of a functional OS; in some ways, the system knowledge base might be regarded
as analogous to parts of the Windows Registry [Solomon et al. 2009] or the Linux sysfs
file system [Mochel 2005], albeit with a much more powerful type system, data model,
and query language. Barrelfish uses this functionality for, among other things, repre-
senting the memory hierarchy to performance-conscious parallel applications, and as
a name server for other system services. Along with the authors of Infokernel [Arpaci-
Dusseau et al. 2003], we argue for making a rich representation of system information
available for online reasoning, and CLP provides a powerful tool for achieving this.

6.2. Disadvantages

Unsurprisingly, the approach also has some significant drawbacks.

Constraint satisfaction is no silver bullet. A hardware configuration problem like PCI,
with all its special cases, is very natural to express as a constraint satisfaction prob-
lem. However, this does not automatically lead to a solution in a reasonable time.
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Constraint solvers have a well-known tendency to explode in complexity (and, conse-
quently, time of execution) without careful specification of the problem, and our use of
CLP is no exception in this regard.

Part of this is due to ECLiPSe being a relatively simple solver by modern standards,
but much of the complexity is inherent. In practice, the onus is on the programmer
to guide the solver by careful annotation of the problem. This makes the source code
more complex than a simple specification of the constraints; our Prolog code is carefully
written to avoid an explosion in complexity and/or runtime.

For example, in our PCI case we sort the variables to be instantiated according to
the requesting size of the device in an ascending order. The solver starts probing the
last element of the list of variables. This causes it to try to place the device with
the biggest size requirement first, which is generally more difficult. If small devices
would be placed first, the solver would most likely later need to reallocate them, to
free up a large continuous address range in order to place a bigger device. This would
potentially lead to a whole permutation of the tree.

To take another example, the natural-alignment property is best expressed by a
modulo division of the base address by the size, as shown in Section 3.2. If the remain-
der is zero, the address is aligned according to the size. However, using this imple-
mentation, when the solver tries to instantiate the base address variable, it searches
all integers one by one until it finds a value with a zero remainder. In case some other
constraints cannot be met, the solver must try another solution and repeat searching
for values with a remainder of zero, leading to a huge execution time. We therefore
modified the associated goal slightly, by letting the solver choose an integer from a
(typically small) precomputed range which is multiplied by the device’s size to deter-
mine the base address. The upper bound of the range is chosen so that the maximum
base lies just beyond the fixed window of the root bridge, therefore including all pos-
sible naturally aligned base addresses for the device, while substantially reducing the
search space.

Increased resource usage. Even with the heuristics we have described, ECLiPSe CLP
is an interpreted, high-level language with high execution time overhead compared to
C. Additionally, a CLP algorithm works by propagating constraints and then probing
values rather than assigning values in a straight-forward iterative way. Clearly this
leads to longer execution times.

For this work we used a CLP solver which, while easy to port and embed in an
OS, is relatively slow by modern standards. A more modern Satisfiability Modulo
Theories (SMT) solver like Z3 [de Moura and Bjørner 2008] could express most of the
same constructs we use in ECLiPSe but would almost certainly significantly improve
execution time.

Nevertheless, for some classes of problem, such as the PCI programming case we
discuss in this paper, the execution time overhead is not critical as long as it remains
under a second or so. Additionally, the PCI configuration changes rarely and the previ-
ous solution can be cached and reapplied without the need of starting the CLP system.
In general, boot time is only increased when the PCI configuration changed since the
algorithm ran last time. However, the performance penalty clearly rules out a class of
other, time-critical hardware-related tasks.

Apart from being a programming language, CLP can also be used as an algorithm
design tool: it aids in considering requirements, constraints and rules. Once imple-
mented, CLP code can be compiled to C code and finally to a standalone executable,
although ECLiPSe cannot currently output its internally-generated machine code in
the form of an independent executable, other systems such as GNU Prolog [Diaz 2011]
do produce standalone executables of constraint logic programs. This combination of
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CLP as design tool and compiling the code down to an executable preserves many
of the benefits, such as maintainability and clean design, while offering reasonable
performance.

In the extreme, CLP solutions can be applied completely statically. For example,
resource constrained devices such as small battery powered sensor nodes or embedded
systems usually have a simple and fixed PCI configuration without hotplug support.
They can be programmed by running the solver once, offline, on a standard PC with
PCI data from the embedded system. The solution found can then be added to the
device’s boot image and applied at every boot-up of the system. With our approach it
is particularly easy to run the algorithm on a standard PC: the algorithm and the PCI
facts are written in a non-platform-dependent and high-level way.

Large code base. While we use considerably less PCI-specific code (C and Prolog) to
implement our solution, we do employ a large body of code in the form of the CLP
solver. The port of ECLiPSe we use in Barrelfish consists of 16242 lines of C,1 plus a
handful of assembly-language lines. In addition, the core CLP libraries add 1042 lines
of Prolog, many of them quite long. The complete solver executable (statically linked)
consists of 1.5MB for a 64-bit x86 OS. Additionally, a compressed RAM disk of 600kB
provides the necessary Prolog files. This is clearly significant, and adding this amount
of code to the boot image of an OS raises at least two concerns.

First, there is the issue of code bloat. On modern hardware, the boot process is
not unduly impacted by the overhead, but the difference in start-up performance is
noticeable compared with the (considerably less functional) hard-coded PCI solution
we used in the early stages of OS development. On the other hand, as mentioned
previously, the CLP solver does provide a valuable data management service to other
parts of the OS as a general name server and policy engine, and so the cost in code size
should be amortized over the whole set of client subsystems which use it.

Second, there is the extent to which we can trust the CLP solver itself. We rely on
ECLiPSe behaving correctly. Since it is a mature, general-purpose system, we might
expect it to be reliable and relatively bug-free. However, it is unlikely that a complex
piece of code like ECLiPSe will be formally verified, which makes our approach less
attractive for high-assurance operating systems. However, such systems typically are
written to specific hardware platforms, obviating the need for complex configuration
logic.

For high-assurance, formally verified systems, a better application of this approach
would be to apply the ideas at compile time, which would integrate with the seL4
approach [Klein et al. 2009] of modeling the entire OS in a high-level language, which
is then translated (in a way that preserves the verified properties) to C.

Finally, we note that in the specific case of PCI configuration, while the code to
generate a valid configuration can be complex, it is relatively simple to test for the
correctness of a given configuration. This property would allow runtime validation of
the results of the CLP search, without the need to rely on ECLiPSe behaving correctly
for all possible inputs.

Boot sequence. Configuring hardware at OS boot time in a high-level language like
CLP means that the language runtime has to be started early in the boot process. Bar-
relfish may be unique in loading a full CLP system before configuring PCI hardware.

Perhaps surprisingly, this imposes very few requirements on the OS. The SKB, like
most of the components, executes in user space as in a classical microkernel design.

1LOC counts were generated using “SLOCCount” by David A. Wheeler.
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However, CLP requires very little of the OS to be functional beyond basic (nonpaged)
virtual memory and a simple file system, initially from a RAM disk image.

The dynamic nature of the solution allows us to load further functionality after an
initial PCI configuration when disks, networking interfaces, etc. come online.

Learning curve. Most OS programmers use C rather than Prolog to implement algo-
rithms, and the learning curve for a language like Prolog is almost certainly steeper
than for C. However, we feel someone with a basic knowledge of Prolog will find it
easier to understand our code than a complex, imperative C version.

Furthermore, we are by no means the first people to try using logic programming in
operating systems; for example, Prolog has been successfully used to provide network
configuration logic in Windows [Hovel 1995].

6.3. When to Use CLP

PCI address allocation is one of the most complex hardware resource allocation prob-
lems currently found in PCs, because multiple devices are configured in a single step,
and there are many dependencies between devices and bridges, and constraints on the
assignment of addresses to groups of devices under a bridge. One might see it as some-
thing of a special case. Historically, however, hardware complexity has tended only to
increase, with a concomitant increase in software’s responsibility to configure it: PCI
arose as a solution to the increasing complexity of device configuration in earlier sim-
pler ISA and ISA-PnP systems, which it resolved by placing a greater configuration
burden on platform firmware and system software.

A similar emerging trend can be observed in the configuration of the interconnect
between cores, caches, memory and devices as it gains increasing complexity. Previ-
ous systems, such as the older Intel frontside bus architecture, had static intercon-
nects whose architecture was fixed in hardware. However, current interconnects such
as QPI and HyperTransport [Conway and Hughes 2007] are configurable multihop
point-to-point networks. Present systems rely on platform firmware to configure these
networks statically at boot time, but one can easily imagine a future where system soft-
ware may be able to dynamically reconfigure the interconnect according to workload
requirements, for which a declarative solution in CLP may be appropriate.

We therefore discuss the general properties of a hardware configuration problem
that may suit a CLP-based solution. If most of the following characteristics apply, a
CLP-based solution may be appealing:

Configuration parameters need to be allocated from a constrained region. For example, if
there is a set of smaller address regions that need to be allocated from a bigger avail-
able address regions, the base address of every region can be translated to a variable
to be assigned a concrete value by the CLP program.

Parameters have clear constraints. If the configuration parameters have clear con-
straints (for example, natural alignment), these can easily be expressed as a CLP
constraint.

Dependencies between parameters. If there are dependencies between multiple param-
eters (for example, the placement of address regions defined by base and size param-
eters, such that position of one region influences where others can be placed), it is a
good idea to use CLP. Constraints allow us to express these dependencies before con-
crete values are assigned to variables, leaving great flexibility in parameter allocation
while still meeting the dependencies.
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Permutations of configurations. If meeting dependencies between configuration param-
eters might cause a large permutation and reassignment of other parameters, CLP
can handle this cleanly by first collecting and considering all constraints, before as-
signing concrete values to variables. The imperative alternative would be to search for
valid permutations by backtracking, which might be too expensive, and leads easily to
complex code.

Handling special cases natively and cleanly. Handling special cases in an imperative lan-
guage often becomes messy quickly, because they are usually treated as workarounds
added to the core code. By contrast, CLP allows additional constraints to be assigned
independently of the core search logic, simplifying the treatment of special cases.

6.4. Applying CLP to Resource Allocation

As we have shown, CLP can handle many complicated requirements on resource con-
figuration. However, its expressive power is also dangerous: one can easily create
unmaintainable and sub-optimal code in CLP if a problem is tackled in the wrong
way. We therefore provide some general suggestions for approaching a configuration
problem in CLP.

First, it is essential to define an appropriate data structure and to create every con-
figuration parameter variable (such as base addresses) only once, so that all necessary
constraints can be applied to the single variable standing for a parameter. For hard-
ware configuration, a data structure which mirrors the hardware topology is natural,
and allows dependencies between devices to be expressed in the data structure be-
tween the items representing them. The data structure should contain one variable
for each parameter (such as base address), which will be be assigned a concrete value
by the CLP system. Next, the data structure is walked and constraints applied to
the variables in such a way that no temporary variables are created, and constraints
mistakenly applied to these temporary variables. Unfortunately, when using a mix
between CLP and Prolog (as in ECLiPSe), it is easy to create temporary variables by
mistake. Finally, the variables should be collected and passed to the CLP solver to
instantiate them with concrete values.

7. RELATED WORK

This paper has considered a new approach to hardware programming, focusing on the
specific problem of PCI resource configuration. The PCI specification [Budruk et al.
2004; PCI-SIG 2009] describes the mechanisms and requirements for correct config-
uration of a PCI system, but does not specify any particular algorithm to be used in
this process, leading to a variety of different (usually incomplete) solutions in current
systems, as described in Section 2.7. These solutions are being iteratively refined and
improved to handle more complex scenarios such as device hotplug [Microsoft 2003b;
TJworld 2008], leading to greater complexity.

A resource allocation algorithm for a hierarchical tree structure such as PCI has
been patented by Dunham [1998]. This algorithm sorts devices with fixed require-
ments according to their base address in ascending order, and all other devices ac-
cording to their alignment requirements (size) in descending order. It then allocates
resources to devices and bridges using a first-fit strategy starting at the lowest-level
secondary bus, allowing it to determine the size requirement for the lowest-level
bridge. Once its size is set, a bridge is then treated as a fixed-size device for allo-
cation at the upper levels, and placed using the same first-fit allocation. Bridges are
considered to have fixed address requirements if a device at any level below the bridge
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has a fixed requirement. As it encodes a specific traversal of the resource tree, this
algorithm is roughly comparable to the postorder traversal discussed in Section 5.6
and used in varying forms by several current systems.

Rather than encode device configuration logic in low-level systems languages, we ar-
gue for wider use of declarative programming techniques. In this work, we specifically
use constraint logic programming [Jaffar and Lassez 1987], a technique derived from
logic programming and used to allocate resources in many fields. Prior applications of
CLP include room allocation, task and job scheduling [Apt and Wallace 2007; Reis and
Oliveira 1999], and indeed in our implementation we reused ECLiPSe primitives orig-
inally intended for task scheduling. Prolog has also been used in commercial systems
such as Windows NT [Hovel 1995] to derive network configurations: a backtrack-based
binding algorithm takes facts about interfaces of network modules and derives valid
configurations, including the correct load order of modules, which it then stores to the
registry. DEC developed a series of expert systems to ensure that selected component
configurations that include CPUs and other hardware as well as software are valid
and components are compatible to each other [Barker et al. 1989]. Hippodrome uses a
solver to automatically configure minimal and still performant storage systems by an-
alyzing workloads and iteratively searching a global minimum [Anderson et al. 2002].
Declarative specifications of resources and resource requirements have also been used
successfully by systems such as Condor [Livny et al. 1997; Thain et al. 2005]. In the
context of the Semantic Web, the resource description format (RDF) [W3C 2004] is
widely used to represent and reason online about resources. RDF is expressively al-
most equivalent to the logic programming approach we present here (ignoring the con-
straint and optimization extensions we employ), and might form the basis for a viable
alternative to ECLiPSe.

Declarative language techniques have also been applied to operating systems, to
date largely in the area of resource allocation. The Infokernel [Arpaci-Dusseau et al.
2003] was an early advocate in the OS arena of making a rich representation of system
information available for online reasoning. Singularity [Spear et al. 2006] uses XML
manifests to reason about the resources used by a device driver. These manifests may
be analyzed at driver install time to checking for resource conflicts. They also ensure
the correctness of a driver’s interaction with the OS through contracts on message
channels. The related Helios system [Nightingale et al. 2009] also uses manifests,
to define preferred affinities of message channels to other processes, and thus guide
the placement of processes to CPUs in a heterogeneous system. Similarly, the Hydra
framework [Weinsberg et al. 2008] uses a declarative approach to reason about avail-
able resources in a heterogeneous system consisting of host CPUs and programmable
offload devices. Using an XML-based description language, the Hydra runtime selects
suitable offload processors, thus achieving greater utilization of processor resources
while reducing complexity for the programmer.

The complexity of hardware access can also be reduced through declarative ap-
proaches. Devil [Mérillon et al. 2000], an IDL for hardware programming, uses a
declarative specification of device ports (base addresses), registers and their interpre-
tation to generate low-level code for device access. This leads to simpler and more
understandable code for device drivers, in an attempt to improve driver reliability.
ATARE [Kauer 2009] uses a series of regular expressions to extract IRQ routing infor-
mation from ACPI, without the need for the usual complex byte code interpreter.

Finally, SQCK [Gunawi et al. 2008] uses declarative queries to concisely implement
a complete file-system consistency checker, which is also able to handle complex re-
pairs. Together with the previous work, this signals what we see as a promising trend
towards applying high-level declarative techniques to simplifying the construction of
traditionally complex and error-prone systems software.
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8. CONCLUSION AND FUTURE WORK

In this paper we have investigated the case for applying declarative language tech-
niques to low-level configuration of hardware in modern machines. In our initial ex-
periments, we have shown that we can implement a solution to the complex PCI re-
source allocation problem using CLP with few lines of code, written in a natural and
easy-to-evolve manner.

In addition, the approach provides considerable benefit from a clean division be-
tween policy and mechanism, and the further separation of general solution specifica-
tion from the numerous special cases which inevitably occur when dealing with real
software. However, care still must be taken when formulating the problem in CLP to
avoid unacceptable explosions in execution time when searching for a solution.

The principal disadvantage of our approach is that it is heavyweight, in terms of
memory footprint, execution time, and (when also considering the CLP runtime) total
lines of code. Much of this is an artifact of our particular choice of a powerful, gen-
eral purpose, but also mature (and therefore slower than the current state of the art)
constraint logic programming system. While this choice has allowed us great freedom
to explore the design space, a more appropriate solution for a product would compile
the search algorithm into an efficient form when the OS was built, resulting in much
faster execution and a smaller memory footprint.

Our view is therefore that the approach shows promise, and our experience in build-
ing an OS and delegating much hardware configuration functionality to the CLP en-
gine has been positive so far. In our view, industry trends such as heterogeneous mul-
ticore, intelligent peripheral devices, sophisticated and reconfigurable interconnects,
and partial cache coherence, combined with increasingly diverse platform configura-
tions, strongly motivate a new and more systematic approach to reasoning about hard-
ware configuration.

In our ongoing work, we are applying declarative techniques to other aspects of
Barrelfish—in particular, more complete representations of the memory hierarchy
than are available in typical OS NUMA support—and also applying logic program-
ming techniques to naming and addressing the various processing elements in hetero-
geneous multicore systems.
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