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Kurzfassung

Diese Dissertation zeigt, dass die erhöhte Betriebssystemkomplexität, die
durch die Notwendigkeit entsteht, sich an eine grosse Anzahl unterschied-
licher Rechnersysteme anzupassen, mittels deklarativer Techniken signifi-
kant reduziert werden kann.

Moderne Hardware ist zunehmend unterschiedlich und komplex. Es ist
wahrscheinlich, dass sich diese Entwicklung in Zukunft fortsetzt. Diese
Entwicklung erschwert den Betriebssystembau. Betriebssysteme müssen
sich der Rechnerarchitektur optimal anpassen. Sie müssen den gesamten
Funktionsumfang des Rechners ausschöpfen, um die volle Leistung des
kompletten Systems zu gewährleisten. Vom Betriebssystem ungenützte,
suboptimal genützte oder gar falsch genützte Rechnerfunktionalität führt
zu geringerer Leistung des Gesamtsystems. Traditionelle Betriebssysteme
passen sich durch vorgefertigte Regeln, die im ganzen Betriebssystem ver-
teilt und mit der eigentlichen Betriebssystemfunktionalität vermischt sind,
der Rechnerarchitektur an.

In dieser Arbeit argumentiere ich, dass es aus zwei Gründen nicht
mehr möglich ist, vorgefertigte Regeln für eine Anzahl bekannter Rech-
nerarchitekturen mit der Betriebssystemfunktionalität zu vermischen. Er-
stens garantieren vorgefertigte Regeln nicht, dass alle Rechnerfunktionen
vollständig ausgeschöpft werden. Zweitens bedeutet das, dass die Regeln
für jede neue Rechnerarchitektur angepasst werden müssen, wobei die Re-
geln für bisherige Rechnerarchitekturen beibehalten werden müssen. Dies
führt zu erheblicher Betriebssystemkomplexität und schliesslich zu einem
enormen Anpassungsaufwand. Um dies zu vermeiden, muss das Betriebs-
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iv KURZFASSUNG

system während der Laufzeit Wissen über die Rechnerarchitektur aufbau-
en und daraus, durch logische Schlussfolgerungen, die bestmöglichen An-
passungsregeln ableiten. Dies führt zu einfacheren, verständlicheren, pfle-
geleichteren und leichter anpassbaren Betriebssystemfunktionen und stellt
sicher, dass die Rechnerfunktionalität vollständig ausgeschöpft wird.

Der Wissensaufbau und das Ableiten von Anpassungsregeln durch lo-
gische Schlussfolgerungen sind mit hoher Programmierkomplexität ver-
bunden. Dies gilt insbesondere, wenn dafür maschinennahe Programmier-
sprachen, wie zum Beispiel C, verwendet werden. Deklarative Techniken
erlauben hingegen, angestrebte Regeln durch eine einfache und verständ-
liche Beschreibung der gewünschten Art der Anpassung, basierend auf
Wissen über die Rechnerarchitektur, abzuleiten. Durch die natürliche Be-
schreibung in höheren Programmiersprachen wird die Programmierkom-
plexität stark verringert.

Um den Vorteil deklarativer Techniken im Zusammenhang mit Kom-
plexität und Anpassungsfähigkeit in Betriebssystemen zu beweisen, stelle
ich in dieser Dissertation verschiedene Fallstudien vor, die, basierend auf
deklarativen Techniken, Regeln für die Anpassung an die Rechnerarchi-
tektur, mittels logischer Schlussfolgerungen, ableiten. Die Fallstudien set-
zen kein Wissen über die Rechnerarchitektur voraus, sondern eignen sich
dies während der Laufzeit an.

Das Wissen wird in einem zentralen Wissensdienst des Betriebssy-
stems aufgebaut. Regeln werden in diesem Wissensdienst durch logische
Schlussfolgerung abgeleitet. Dadurch, dass die Fallstudien, und somit die
verschiedenen Betriebssystemkomponenten, diesen Wissensdienst benützen
können, wird ihre Komplexität nochmals deutlich verringert. Es ist somit
nicht nötig, dass sich jede einzelne Betriebssystemkomponente mit der
Wissensgewinnung und der Ableitung von Regeln beschäftigt. Mit die-
ser Implementation beweise ich die praktische Anwendbarkeit deklarati-
ver Techniken in Betriebssystemen.



Abstract

This thesis argues that tackling the increased operating systems complex-
ity with declarative techniques significantly reduces code complexity in-
volved in adapting to a wide range of modern hardware.

Modern hardware is increasingly diverse and complex. It is likely that
this trend continues further. This trend complicates the operating system’s
construction. Operating systems have to adapt to the hardware architec-
ture and exploit all features to guarantee the best possible overall system
performance. Not exploiting all hardware features, or using them in a sub-
optimal or even wrong way, results in lower overall system performance.
Traditionally, operating systems adapt to the underlying architecture by
predefined policies, which are intermingled with the core operating sys-
tem’s functionality.

In this thesis I argue that for two reasons it is no longer possible to
encode predefined policies for a set of known hardware architectures into
the operating system. First, predefined policies do not automatically guar-
antee that hardware features are fully exploited on all hardware platforms.
Second, for this reason, predefined policies would need to be ported to
many different hardware platforms, while, at the same time, it would be
necessary to keep the policies suitable for older platforms. This leads to a
significant complexity of operating systems and finally to a high engineer-
ing effort, when porting the operating system to new hardware platforms.
To avoid this problem, the operating systems must gain hardware knowl-
edge at runtime and derive policies suitable for the current architecture
through online reasoning about the hardware. This leads to operating sys-
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tems code that is simpler, better understandable, more maintainable and
easier to port, while ensuring that the operating system exploits the hard-
ware features as best as possible.

Reasoning about hardware and deriving policies is a complex task.
This is especially the case, if low-level languages like C are used. Instead,
declarative techniques allow deriving policies through a simple description
of how to adapt to the hardware based on hardware knowledge gathered
at runtime. The natural description in a high-level declarative language
reduces code complexity significantly.

To prove the usefulness of declarative techniques in the context of
adaptability of operating systems and handling of complexity, I present
several case studies in this thesis. The case studies are based on declara-
tive techniques. They reason about hardware and derive policies based on
hardware knowledge. The case studies do not assume any a priori knowl-
edge about the current hardware platform. Instead, they gain knowledge
at runtime by online reasoning about the hardware.

A central knowledge service stores hardware knowledge and allows
the operating system and applications to derive policies according to declar-
ative rules. Because the case studies, and therefore the operating system
components, can use the central service, their complexity is again reduced
significantly. It is not necessary, that every single component deals with
knowledge gathering and deriving policies by itself. It pushes this part
to the knowledge service. With this implementation I prove the practical
feasibility of applying declarative techniques in real operating systems.
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Chapter 1

Introduction

This thesis argues that operating systems face a significant challenge to
adapt to a wide range of diverse hardware found already today. As the
diversity and heterogeneity of hardware is likely to increase, the complex-
ity involved in adaptability and smart decision taking is growing. From
a portability and software engineering aspect, it is therefore not possible
anymore, to intermangle policies throughout the operating system code.
Further, generic policies are not an option, because they do not automati-
cally yield to optimal hardware usage on every platform.

This thesis further argues that the operating system needs to reason
online about the current underlying hardware to adapt as best as possible
to every platform. Reasoning involves deep knowledge of hardware and
can quickly lead to high complexity. Typically, there is a lot of data about
hardware. According to Niederliński[97], data in a specific context pro-
vides information about it. The ability to use the information to achieve a
specific goal, like, for example, adapting to hardware, leads to knowledge
about hardware, which can be used to derive informed policies (see also
section 3.2.1 for the complete definition).

The complexity involved in reasoning and decision taking has to be
taken out of the operating system code to enable adaptability and porta-
bility to a large set of diverse hardware. This thesis presents the design

1



2 CHAPTER 1. INTRODUCTION

and implementation of the system knowledge base (SKB), the reasoning
facility of the operating system with the goal to reduce code complexity
in both, the operating system’s mechanism code and the policy code. It is
the central place to store knowledge and derive policy parameters online,
based on hardware information of the current underlying platform. A clear
policy/mechanism separation throughout the complete system enables the
programmer to implement policy code and mechanisms separately leading
to a much lower complexity and higher portability. Reasoning algorithms
rely on high-level knowledge in a machine-independent format and mech-
anism code is simple, because it does not need to take decisions based on
hardware information. For this thesis I chose the ECLiPSe constraint logic
programming system to implement reasoning algorithms, because it is an
expressive high-level declarative language and it is easy to port.

The thesis presents concrete use-cases for the SKB, showing what type
of data is needed to derive policies and how algorithms transform this
data into context-specific knowledge. I introduce and motivate the specific
use-cases in the respective chapters while also providing the necessary
background and a short use-case-specific evaluation.

The thesis is part of the Barrelfish project[15], a joint work between
ETH Zürich, Microsoft Research Cambridge, Microsoft Research Red-
mond and Microsoft Research Silicon Valley. Parts of the thesis have been
published in several papers[17, 18, 48, 49, 106, 107, 116, 117, 118, 144]
and I refer to the concrete ones on a per chapter basis. Together with An-
drew Baumann and Simon Peter, we created the basic system and formed
it into a solid and stable basis for doing operating systems research on top
of it. Andrew Baumann contributed mainly on the distributed nature of
Barrelfish, including the Multikernel and the capabilities[17] and on Bar-
relfish’s message passing[18]. Simon Peter’s PhD thesis[105] is mainly
about scheduling in a Multikernel and he also contributed to the capabil-
ity system, the Multikernel and Barrelfish’s message passing. Timothy
Roscoe contributed to the Multikernel, the capability system and the mes-
sage passing while specifically working on Mackerel[114], a device de-
scription language and Hake[113], a build system for heterogeneity sup-
port. Akhilesh Singhania worked on routing of messages and contributed
to the Multkernel and capability system. Jan S. Rellermeyer contributed
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to the message passing and worked on a name service for named commu-
nication endpoints lookups. Pierre-Evariste Dagand contributed an inter-
face description language for message passing[32, 33]. Tim Harris worked
on language constructs to facilitate using the asynchronous message pass-
ing interface for programmers by avoiding the necessity of “stack-ripped”
code[55, 56]. Paul Barham and Rebecca Isaacs mainly worked on mes-
sage passing and the Multikernel. Pravin Shinde is currently working
on high-performance networking based on low-level demultiplexing, new
hardware features provided by NICs and user-space network stacks. Ko-
rnilios Kourtis is mainly working on scalable file systems. Stefan Kästle is
working on possible hardware designs for hardware-based message pass-
ing with demultiplexing facilities in hardware providing isolation between
message channels on the same core.

1.1 Motivation
This section introduces the main reasons for the increased diversity and
heterogeneity of current and future hardware. It motivates the need for
adaptability to hardware at the operating system’s level by showing hard-
ware diversity already found in today’s machines.

To improve execution performance of applications on desktop ma-
chines and servers, in the past few years the clock frequency of proces-
sors could be raised, while keeping the architecture mostly the same. As a
consequence, applications ran faster without having had to change them.
Now, a critical point has been reached, where it is not possible anymore
to simply raise the clock frequency due to physical limitations like, for
instance, the heat produced[128, 129]. Instead, a higher degree of paral-
lelism in terms of multiple cores is offered by the hardware to improve
performance of applications[22]. This, however, has consequences in the
whole hardware design (which I show below), such as specialization of
computing units and increased heterogeneity, interconnect topologies and
memory hierarchies. This again has implications on the operating system’s
design.

Nowadays, we have commodity machines with up to 128 hardware
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execution contexts (for example four Intel Xeon E7-4870 CPU packages
with a total of 80 hardware execution contexts or a SPARC T3 processor
with 128 hardware execution contexts) and they are mostly homogeneous
in terms of CPU type per system. Current operating systems can deal with
this number of cores, even if they originally were not designed for many-
core machines. In the future, machines with hundreds of cores are ex-
pected to improve the performance even more by providing a high degree
of parallelism[22, 58]. This allows desktop machines to run a wide range
of compute-intensive applications like, for example, RMS workloads[58].
This trend has implications on the hardware construction side.

Cores are expected to be more specialized to certain functions. Com-
putations will need to be placed on the right core to execute on by the
operating system. Not only processor cores, but also special devices like
offloading hardware of smart NICs[96], cryptographic accelerators (for ex-
ample in Sparc T3 processors), FPGAs and GPUs[51] will participate in
the computation. The hardware is becoming increasingly heterogeneous
and this trend is likely to continue in this direction.

The interconnect between different cores, caches, memory and devices
are much more complicated even nowadays and looking at recent trends,
the complexity is likely to grow even further. Current interconnects look
more like a network than like a bus[18]. Some devices will be near to-
gether while the communication between others might be routed over sev-
eral bridges and switches of the interconnect. Different paths have differ-
ent characteristics in terms of latency, bandwidth and throughput. Section
1.1.1 shows that there are already clear latency differences in the network-
like interconnect.

It is the task of the operating system to assign hardware resources such
as CPU cores, memory, accelerators, offloading hardware, devices, disk,
interconnect bandwidth or network connections, to applications. The oper-
ating system not only needs to multiplex hardware safely, but it also needs
to derive smart allocations to exploit hardware features, meet applications’
expectations on hardware and finally improve hardware utilization. This
is an increasingly difficult task on heterogeneous hardware.

Smart policies decide which parts of the resources are to be assigned
to which computation. The policies become more complex, because, as I
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show in chapter 8, they need to include hardware topology knowledge,
hardware feature information, and application requirements in order to
achieve optimal performance for the overall system.

The operating system is an important part of the software stack. As
the thesis argues in the next paragraph and in section 1.2, it is impossible
to manually tune software to a set of known hardware. Instead, software
needs to adapt automatically to a wide range of divers hardware, where
the hardware configuration is not known in advance. Because the operat-
ing system is itself an important part of the complete software stack, it also
has to adapt itself automatically to the underlying hardware. The operat-
ing system must never be the bottleneck in terms of scalability, because
its scalability directly affects applications’ scalability. Chapter 7 clearly
shows how application scalability is affected by the scalability of per-
forming a globally coordinated operating system operation. A poor, non-
hardware-aware implementation of an operating system operation, which
executes on behalf of the application, limits the application’s scalability.
Further, it must not prevent applications to extensively use the complete
available hardware, even if it is highly heterogeneous. Instead, the operat-
ing system’s task is to actively support applications to use all hardware as
much as possible.

Nowadays, it is not practical anymore to manually tune operating sys-
tems and applications for specific many-core systems when deploying
them. In a mass-market deployment scenario, there are too many different
kinds of hardware types available. Generic policies are not suitable for all
kinds of hardware types and do not automatically lead to optimal hardware
utilization in all the cases. Instead, operating systems, language runtimes
and applications, with help from the operating system, have to automati-
cally adapt to the current hardware in a sensible way. Additional resources
should improve performance or at least not decrease it. Additional cores
should not cause contentions in the memory system such that performance
decreases. Sensible allocations of cores and memory by the operating sys-
tem is important, independently of the type of hardware the system is cur-
rently running on. Furthermore, hardware is shared by many applications.
The system has to manage a dynamic set of different long running and in-
teractive applications and cannot statically partition the machine to a fixed
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set of applications. As I argue in chapter 8, the operating system has to
decide how many and which cores to allocate to which application. Sim-
ilarly it has to decide on memory region allocations per application. The
set of hardware systems, on which an operating system and applications
might run, increases over time and therefore the topology, available fea-
tures and characteristics are not known in advance. Applications, and more
importantly the operating system and language runtimes, have to adapt at
boot-up and runtime to the underlying hardware. Adapting to hardware
means deriving the best allocation policies per application according to
application provided requirements. Therefore, the operating system needs
a smart way to reason about the hardware and derive policies at runtime
based on online discovery of hardware features. These challenges require
a smart and general way of incorporating online hardware discovery in-
formation and application requirements to derive allocation and hardware
usage policies.

So far, there has been little work on commodity operating systems to
support heterogeneity from the ground up. This thesis explores techniques
to support heterogeneity and, furthermore, to deal with the increased com-
plexity caused by heterogeneity.

The following sections describe the various dimensions of diversity
and heterogeneity already found in current commodity systems.

1.1.1 Diversity
In this section I define the three dimensions of “diversity” used in this the-
sis. The classification is important, because in this thesis I explore to what
extend the SKB can help the operating system to adapt to the hardware in
each dimension. I term the three dimensions non-uniformity, core diver-
sity and system diversity.

Non-uniformity

Non-uniformity traditionally refers to non-uniform memory access (NUMA)
for scalable multiprocessing. The classical definition means that memory
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regions are grouped into NUMA nodes and a group of cores belongs to one
NUMA node. It is still possible to access memory of a different NUMA
node, but at a higher latency. The latency of performing an operation on
memory depends on the core performing it. The latency is therefore non-
uniform and depends on the combination of core and memory address.
Table 1.1 in section 1.1.2 shows that the latency differences are signifi-
cant.

Nowadays the concept of non-uniformity becomes wider. A hierarchy
of cache levels where some cores share a certain cache leads to a non-
uniform cache architecture and non-uniform access latencies to cached
values.
Multiple cores in a system generate an increased number of memory trans-
actions. Obviously, the memory system has to scale with the number of
cores. Therefore, most of today’s mutli-socket systems are NUMA sys-
tems, where a separate memory controller per socket, or even per core,
handles memory transactions to a specific NUMA-domain. This leads to
fast local memory access, if OS and applications only access local mem-
ory.

Caches reduce the number of memory transactions and significantly
reduce access latencies. Typical systems today have three levels of caches
where the third level is shared by some or all cores of a socket. The cache-
sharing property is important when the OS has to decide which threads to
place on which cores, especially if the operating system would know from
the application, whether threads would benefit from a shared cache or not.
Also, as I show in chapter 7, some operations are significantly faster, if the
fact, that some cores share a cache, is exploited.

Overall, the memory hierarchy including NUMA-domains, caches and
cache-sharing is becoming more complex to handle properly by the OS.
Only detailed knowledge allows the full benefit of the memory system’s
design by the OS and applications to be exploited.

Core diversity

Core diversity refers to the different types of cores within a single system
on which a single-image OS will run. Nowadays, most systems still have



8 CHAPTER 1. INTRODUCTION

uniform cores, but trends are towards having different cores in a single sys-
tem in terms of power and performance tradeoffs. The ARM big.LITTLE
architecture[52] provides four cores of the same instruction set. Two of
them are high performance cores and the other two consume low power.
The operating system can choose to execute a computation on a high-
performance core or on a low-power core. In order to do so, it needs
detailed knowledge about the cores, but also about the type of computa-
tion. Further, it needs to know, whether the goal at any given moment, is
to save power or provide high performance. Instruction set extensions are
a another step towards heterogeneity in terms of performance and power
tradeoffs[58]. The IBM Cell processor[53] has radically heterogeneous
cores. Projects such as HeraJVM[85] and CellVM[99] show how difficult
it is to use such a heterogeneous processor. The Intel SCC[62] is itself
a homogeneous system in terms of cores, but not in terms of its memory
system. An SCC connected to a x86 64 host provides an additional set of
x86 32 cores on which the OS can run. Barrelfish runs as a single-image
OS on an x86 64 host and the attached SCC[86, 107]. GPGPUs (General-
Purpose computation on Graphics Processing Units) is becoming an in-
creasingly hot topic[51]. GPUs are becoming more general-purpose and
participate in the computation. CUDA[100] and OpenCL[71] are frame-
works which allow the offloading of general-purpose computations to the
GPU. The GPU is treated as a device and can only be used by one appli-
cation at a time. To handle multiple GPUs in the same system, a more
advanced task scheduling on GPUs is necessary[125]. The netronom ne-
towrk interface card provides an ARM core on which the OS can run[96].
A while ago, the SunPCi cards[127] provided an x86 based system on a
PCI card plugged into a Sun SPARC system. Windows applications run
together with the Windows operating system on the SunPCi card. The
user interacts with Windows application through a window of the com-
mon desktop environment (CDE) or through a separate monitor connected
to the SunPCi card. This form of heterogeneity allows users to run appli-
cations with different ISA requirements on the same machine, but a single
application cannot run partly on both types of processors.

The work in this thesis does currently not place computations accord-
ing to CPU core features, but it attempts to provide CPU core features (like



1.1. MOTIVATION 9

floating point capabilities, streaming extensions, power-saving modes) in
a high-level abstract and CPU core-independent format, such that future
extensions can reason about them at a high-level, without needing to first
query every core separately.

System diversity

In contrast to non-uniformity and core diversity, the term system diversity
refers to the fact that two completely separate systems are diverse, even if
they are of the same base architecture, like, for example, x86 64 systems.
The number of cores and NUMA regions, the cache hierarchy including
cache sharing and the interconnect topology potentially differ significantly
between any two systems. Additionally, the available set of devices and
accelerators might be significantly different. Therefore, it is impossible to
manually tune code for specific machines. Instead, the software, including
the operating system, has to adapt to the hardware features in an automated
way, such that even future hardware types will be automatically supported.
This removes the engineering effort of porting software to future hardware.
As I show in chapter 7 and chapter 8, the high-level languages approach
allows reasoning about hardware in an abstracted way, such that software
automatically adapts to the underlying hardware.

This type of diversity is already present in today’s systems. Figure 1.1
shows three different commodity systems available nowadays with com-
pletely different interconnects and memory hierarchies.

1.1.2 The interconnect network
Many-core systems often consist of multiple CPU packages which con-
tain multiple cores per package where cores might provide simultaneous
multithreading (SMT)1. Cores within and between CPU packages com-
municate over point-to-point links2, where local communication within
the package is much faster than communication between packages. Addi-
tionally, the interconnect graph is not a full mesh and therefore multihop-

1HyperThreads in AMD
2QPI for Intel, HyperTransport for AMD
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communication is necessary for non-neighbor cores (see figure 1.1(b) for
example). Different latencies and the non-fully connected nature of the
interconnect graph form a sort of diversity in terms of latency. With these
characteristics, the interonnect becomes a network between cores, caches,
memory and devices and is not a bus anymore[18]. In this thesis I argue
that consequently, the interconnect has to be treated as such and network-
type characteristics have to be part of the knowledge about the system. As
chapter 7 shows, treating it as a network and performing the right commu-
nication optimizations has significant performance impacts. Of course, to
derive the right optimizations, not only network characteristics, but also
communication pattern knowledge is important.

Figure 1.1 shows three examples of commodity systems with differ-
ent interconnect topologies and different types of cache hierarchies. Fig-
ure 1.1(a) is a Tyan Thunder n6650W board with two dual-core AMD
Opteron 2220 processors and 8GB RAM across 2 NUMA nodes. They are
interconnected by HyperTransport[64] point-to-point links. Figure 1.1(b)
is a TyanThunder S4985 board with M4985 daughtercard and 8 quad-core
2GHz AMD Opteron 8350 processors and 16GB RAM across 8 NUMA
nodes. The cores are interconnected by HyperTransport[64] point-to-point
links. Figure 1.1(c) is an Intel s5000XVN workstation board with two In-
tel Xeon X5355 quad-core processors with 8GB RAM on 1 NUMA node.
The cores and the memory are connected by the front side bus (FSB) which
is a traditional non-NUMA topology. Point-to-point communication over
HyperTransport[64] or QuickPath[146] links mean that the inside of a
general-purpose computer resembles a network with non-uniform mes-
saging latencies due to different numbers of hops and the different routing
depending on the source and destination of messages.

As earlier measurements show[118], there is a significant difference
in terms of memory access latencies between access of the local and the
remote NUMA nodes (see table 1.1). The increased latency on a remote
access is a result of crossing the interconnect to reach the remote memory.

A similar experiment in[18] shows cache access latencies for the sys-
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Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 1.1: Memory access latencies (in cycles)

Access cycles normalized to L1 per-hop cost
L1 cache 2 1 -
L2 cache 15 7.5 -
L3 cache 75 37.5 -
Other L1/L2 130 65 -
1-hop cache 190 95 60
2-hop cache 260 130 70

Table 1.2: Latency of cache access for the PC in Figure 1.1(b).

tem in figure 1.1(b)3. The results in table 1.2) show that accessing caches
at deeper levels, or even remote caches, have significantly higher latencies.
Boyd-Wickizer et al. report similar numbers for a 16-core machine[23].

1.1.3 Managing Hardware
Starting at the bottom, the operating system has to discover, enumerate
and initialize hardware resources in such a way that it can best be used by
the operating system and finally by applications.

Designing hardware with scalability at the hardware level in mind,
increases its complexity. Apart from having many cores and NUMA-
domains in systems, other hardware components are replicated for similar
reasons (scalability with the size of the system). Nowadays, hardware sys-

3This experiment has been conducted by Simon Peter
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tems have multiple PCIe buses where lots of, increasingly address-space
hungry, cards can be plugged-in, even at runtime. Handling address space
allocation in PCIe requires a deep understanding of the bus and plugged-in
cards, including quirks to apply. Chapter 6 shows how much knowledge
about PCIe buses s required in order to correctly configure them. This
knowledge has to be created at bootup time, since every system might be
different and the bus configuration is not known in advance. Fortunately,
the high-level language algorithm, to configure PCIe buses, presented in
chapter 6, handles the high complexity of this configuration process well.
The increased interrupt load is handled by distributing it through differ-
ent configurable IOAPIC controllers. Typical systems today have multiple
IOAPICs which again have to be initialized and controlled by the operat-
ing system. IOAPICs deliver interrupts to specific cores. The destination
is configured by the operating system. The destination has to be the core,
where the receiver of the interrupt (typically a driver) runs. How to cor-
rectly route interrupts is shown in chapter 6. While this chapter discusses
how to configure the interrupt hardware with few lines of high-level code,
it does not talk about where to run the driver. Deciding where to run a
driver depends on its associated device and on which PCIe bus the device
is. Each PCIe root bridge is attached via a point-to-point link at the in-
terconnect and therefore is closest to a specific CPU socket. Ideally, the
device manager starts the driver on a core close to its associated device.
Although the current implementation does not do that, chapter 5 discusses
how to decide, where to run the driver based on topology knowledge, in
more detail.

The operating system not only needs to adapt to CPUs and memory
systems, but also to varying PCIe bus configurations, interrupt controller
configurations and many more hardware specifics. Again, this stresses the
fact that the operating system needs a reasoning facility to derive correct
hardware initializations, which are automatically adapted to the hardware
configuration found on the platform. The goal is to reduce the code com-
plexity as much as possible.
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1.1.4 Managing Applications

Obviously applications need to be implemented in a multithreaded fash-
ion to benefit from the available hardware parallelism. While this is a
challenge by itself, it also imposes requirements on the operating system.
First of all, the operating system has to direct applications to create a use-
ful number of threads. I argue in chapter 8 that this requires the operating
system to have a global knowledge of the number of cores available, the
number of applications and how many threads they wish to run at the same
time. Second, the operating system has to place threads on available cores,
taking different properties of threads, like, for example, communication
between threads, into account.

1.2 Problem Statement and Hypothesis

Hardware is changing fast and getting increasingly diverse. The operating
system needs to adapt to the underlying hardware, correctly initialize it and
exploit it effectively, even if the hardware’s architecture is not known at the
operating system’s implementation time. Traditional operating systems
face significant challenges in adapting to the underlying hardware, because
often policies are encoded throughout the operating system’s code. This
is, however, increasingly problematic. First, it is impossible to encode
suitable policies for future, not yet known, hardware platforms. Second,
encoding policies throughout the operating system’s code increases com-
plexity and makes it harder to port the operating system to future hardware
platforms, which, however, will be necessary in order to support them.

This thesis investigates how an operating system can adapt to current
and future diverse hardware while keeping the complexity low and porta-
bility high. This thesis is guided by the following hypothesis:

If the operating system had a facility for reasoning about hard-
ware and software, it could better adapt to a large set of di-
verse hardware, exploit hardware features and configure soft-
ware modules to improve overall system utilization, while re-
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ducing code complexity in both, the operating system and ap-
plication components.

1.3 Goals
This section defines the main goals of the thesis and lists the main enabling
factors to build a facility which allows the operating system to adapt to a
wide range of diverse hardware. These goals are important, because they
guide design decisions and implementations of the SKB and the use cases.
Consequently, the remaining chapters refer to the goals and discuss to what
extend they could be achieved. The thesis tries to achieve the goals by
building a reasoning facility with the system knowledge base, which can
be used by the operating system and by applications.

The main goals are as follows:

• Enable the operating system to adapt to the current underlying hard-
ware

• Reduce code complexity involved in decision taking

• Increase portability to current and future hardware platforms

The main enabling factors are:

• Clear policy/mechanism separation

• High-level declarative language to derive policies

• Central global knowledge processing

1.4 Contributions
The thesis investigates how complexity can be handled by applying high-
level declarative language techniques to reason about the underlying hard-
ware. It investigates how a reasoning facility, based on constraint logic
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programming, is useful to build an adaptive operating system, which auto-
matically adapts to diverse hardware. Further, the thesis investigates how
a reasoning facility helps to built services on top of it, which themselves
reduce complexity.

The thesis presents several use cases to prove that reasoning in a high-
level declarative language greatly reduces code complexity, both, in policy
code and also in the mechanisms. Reasoning about hardware makes the
operating system adaptable to the underlying hardware with few lines of
code.

The contributions of the thesis are the following:

High-level reasoning facility helps to build adaptive OSs The thesis
proves that a high-level reasoning facility using a constraint logic pro-
gramming language (CLP) is useful to build an operating system, which
automatically adapts to the underlying hardware. Such a reasoning facility
allows deriving hardware knowledge at runtime and deriving policies with
low code complexity, such that the operating system adapts to the under-
lying hardware. The SKB presented in chapter 3 is the software module
used to prove that high-level languages are useful to build an operating
system which is adaptive to hardware.

Services benefit from reasoning and further reduce complexity The
thesis shows that services built on top of a high-level declarative reason-
ing facility directly benefit from its logical unification and constraint sat-
isfaction techniques. Services become much simpler to build. They ex-
ploit the high-level language, store and process knowledge, and further re-
duce code complexity in the operating system by taking over functionality
which otherwise would be intermingled in individual software modules.
Chapter 4 presents a name service and synchronization and coordination
services built in this way. Chapter 8 explains a resource allocation frame-
work which builds on logical unification and constraint satisfaction.
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Declarative languages reduce hardware configuration complexity The
thesis argues and shows, that correct and complete hardware configura-
tions can be derived with few lines of constraint logic programming code.
As such, it argues, that this approach is preferable compared to an imper-
ative approach using a low-level language like C. Chapter 6 proves that
with the example of PCIe configuration.

Declarative reasoning facilitates adapting to hardware Declarative
languages allow deriving policies such that the operating system and appli-
cations easily adapt to the underlying hardware. The hardware can be ex-
ploited much better, which leads to higher performance. Chapter 7 shows
how a hardware-aware algorithm adapts communication within the op-
erating system to the underlying hardware topology in such a way, that
communication performance is high and scales well with the number of
participants.

1.5 Structure
The rest of the thesis is structured the following way. The background for
the thesis is given in chapter 2. The system knowledge base is presented
in chapter 3. First, the chapter discusses the design principles and then
the implementation. Also, the client interface is explained and examples
show how to interact with the SKB. Finally, the SKB is evaluated in terms
of code complexity and resource usage. Octopus, the coordination service
presented in chapter 4, is an extension of the SKB providing distributed
coordination facilities within the operating system.

After presenting the SKB and Octopus, four use-cases demonstrate
their usefulness. Chapter 5 shows how to build a device manager on top of
the SKB and Octopus. Declarative PCI configuration is explained in chap-
ter 6. Chapter 7 shows how to derive a hardware-aware multicast messag-
ing tree declaratively. Chapter 8 presents a framework and a declarative
way to allocate CPU cores to a set of running applications. Finally, the
thesis concludes in chapter 9.
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Chapter 2

Background

The first part of this chapter discusses declarative techniques and, in par-
ticular, provides some deeper background about constraint logic program-
ming, because this thesis builds on this technique. A better understanding
of the basic concepts helps understanding design decisions of the SKB,
the policy code shown in the use case sections and the interaction with the
mechanism code of the operating system.

The second part of this chapter gives an overview of Barrelfish, be-
cause its structure and mechanisms are enabling factors to build a reason-
ing facility to derive policies outside the operating system’s mechanisms.
Only the parts relevant for this thesis are discussed to provide the neces-
sary operating system background.

Finally, the chapter surveys successful applications of declarative tech-
niques in the operating systems and networks fields.

2.1 Declarative Techniques

As the work of this thesis heavily relies on declarative techniques, this
section provides the necessary related background. After an overview of
declarative programming in general, the ECLiPSe [10, 30] constraint logic
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programming (CLP) system, in which the work in this thesis is imple-
mented, is explained in more details.

2.1.1 What is declarative programming?

Declarative programming is a programming paradigm where the program-
mer describes what he wants, but not how to get there[54, 81, 97]. The
program describes potential solutions by logic rules without defining the
control flow[54, 81]. Complete problems can be described in terms of
variables, relations between variables and logic transformation rules to fi-
nally achieve a state the programmer would like to get, i.e. the solution to
the problem. Typically, problems are described in terms of values, ranges
and their dependencies.

Typically, declarative programming eliminates side effects, since the
problem can only be described, but no concrete steps to be taken can be
defined by the programmer. The concrete steps to be taken are typically
defined by the implementation. This allows the implementation to use
different techniques like loops or backtracking to search for a solution
without exposing the actual technique used to the programmer. It also
allows the implementation to change the internal technique, as long as
the final solution meets the programmer’s expectations. In some cases,
the implementation can automatically parallelize the search for solutions,
because the control flow is not specified by the programmer and, due to
the description, there are no side effects possible1.

High-level declarative programming allows expressing complex prob-
lems in a descriptive way with few lines of code. It reduces the code com-
plexity significantly, while being extremely expressive. This is one of the
main reasons to chose declarative programming techniques when dealing
with complexity. As long as a complex problem can be described in terms
of rules, a declarative language is a good choice.

There are different classes of declarative programming techniques and
corresponding languages, which are explained in more detail in the next

1In practice, most of the languages allow explicit side effects by providing permanent
variables on a heap. This, however, is not the common use of declarative languages.
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section.

2.1.2 Declarative languages
This section surveys common declarative programming techniques, which
may be suitable in the context of an operating system. As such, it is not
a complete list of all declarative programming techniques and languages
available, but it helps to understand the reasons why this work builds on
constraint logic programming.

The paradigm “declarative programming” includes a range of sub-
paradigms where each of which has a number of languages or program-
ming systems.

Logic programming is a well-known form of declarative programming.
Prolog[24, 36, 120, 130], as the programming system for logic program-
ming, allows the programmer to describe a problem in terms of informa-
tion, variables and logical unification rules. The goal is to reason about
information and derive knowledge in a specific context. Facts store known
pieces of information inside the Prolog runtime. The facts can be accessed
by each rule during its complete execution. Variables are unified to con-
stants or facts and possibly to other variables until a solution can be found
such that all requirements on all variables are met, or the system recog-
nizes that there is no solution to the problem. Internally, Prolog makes
extensive use of backtracking to search the complete search space. When-
ever it has to chose a value to assign to a specific variable, it creates a
choice point on the stack and follows down a branch of the search tree.
It will either output a solution, if there is one, and then backtrack to the
choice point or, if there is no solution in the subtree, it will backtrack
to the choice point immediately. At every choice point it assigns a new
value to the variable and tries another subtree of the search space[2]. Ob-
viously, when the search space is huge, Prolog needs to create a large
number of choice points, which will make the search time consuming (or
in fact slow). Datalog has its roots in logic programming and is similar to
Prolog. Compared to Prolog, there are a number of restrictions in terms
of allowed argument complexity and binding of variables, for example.
Datalog was designed originally for declarative databases[28].
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Constraint programming allows the description of a problem in terms
of variables and constraints. Constraints relate variables to a range of pos-
sible values which the system is allowed to assign to them. This includes
restricting a variable to a given set of constant values, but also applying
constraints which relate two (or more) variables to each other. Constraints
between two (or more) variables create dependencies between them. The
dependencies can be created even before any of the variables has a con-
crete value assigned, which is an important feature on which the algo-
rithms in this thesis rely. An example is a variable whose value has to be
greater than the value of some other variable. The constraint is applied to
the two variables, before concrete values are known. The solver takes all
variables and all constraints into account and only assigns values such that
all constraints are met. If there is a solution, it outputs all possible assign-
ments to all variables. Otherwise, it outputs, that there is no solution to the
problem.

In functional programming the programmer defines how a goal should
be reached, by defining a sequence of functions to apply to a given input.
Functional programming typically has no side-effects. Functions purely
operate on input parameters and return the function’s output. There is
not global state which gets modified by any function during execution2.
Because there are typically no side effects, the compiler has freedom for
radical optimizations, including parallelizing parts of the execution with-
out the programmer having to know about it. In fact, many tools in Bar-
relfish are implemented in Haskell[57], a purely functional language. For
this thesis, functional languages are less appropriate, because the thesis’
goal is to reason about information and deriving knowledge, rather than
applying functions on information in a well-known order.

2.1.3 Constraint logic programming

This section explains why constraint logic programming is suitable to
hardware configuration and allocation problems. It lays out why the work

2In practice, functional languages offer means to store global variables, if really neces-
sary.
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in this thesis is based on this technique.
Constraint logic programming (CLP) unifies constraint programming

and logic programming. A CLP system allows the use of logical unifica-
tion in combination with constraints applied to some of the variables. The
logic unification rules prepare the necessary knowledge about the problem
to be solved, and the constraints define ranges of valid solutions to the
problem.

Programs in CLP are formalized in terms of free variables, facts, log-
ical rules, and constraints. Free variables can be unified to other variables
or to stored facts. In CLP, free variables can also be constrained to certain
ranges of values assignable to a variable. Constraints indirectly influence
the unification process, because only some values can be assigned to a
constrained variable. If the unification process tries to assign a value out-
side the range, it fails and triggers a backtrack. To search a valid solution,
the solver enumerates possible values and temporarily unifies a variable to
them, until it finds one. Backtracking is expensive, as for regular Prolog
programs. The programmer might chose to reduce the number of choice
points to limit the number of backtracks performed by the system. This
can lead to a much lower execution time.

As for regular constraint programming, variables in CLP can be used
and constrained even before concrete values are assigned to them. It is
possible to express calculations based on variables with no values yet as-
signed and constraining the result of the calculation to a range of values.
The solver will then search concrete values such that the calculation leads
to a result in the given constrained range. Of course, also the result range
might come from a calculation of other variables.

When implementing a CLP program, the programmer defines a set
of variables and logical unification rules which unify them to stored facts.
This step provides the necessary knowledge about the problem. Second, he
constrains the variables (possibly just by relating them somehow) to define
valid solutions of the problem. Then, the programmer causes the program
to invoke the solver which produces valid solutions in the requested ranges
and based on knowledge coming from stored facts and unification.

CLP programming forms an ideal basis for hardware resource allo-
cations. Logical unification rules derive hardware knowledge and con-
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straints relate dependencies between pieces of hardware. By understand-
ing hardware properties through the logical reasoning and by relating sev-
eral pieces of hardware in terms of constraints in variables representing
the hardware, the solver is able to find an overall valid resource allocation.
The PCIe bus driver in chapter 6 makes extensive use of this technique.
The multicast tree construction in chapter 7 and the global resource al-
location in chapter 8 also make use of logical reasoning and constraint
solving.

2.1.4 CLP programming in ECLiPSe

This section introduces the ECLiPSe CLP programming system, as the
work in this thesis is based on it. The three phases described here need
to be followed exactly, otherwise ECLiPSe might behave in an unexpected
way. The technical report on developing applications with ECLiPSe ex-
plains in detail how to correctly develop applications[121].

ECLiPSe is a Prolog-based CLP system with constraints extensions. It
implements an extended version of the “Warren abstract machine”
(WAM)[2]. Facts are stored on the heap. Code can be uploaded to the
system in source form or can be precompiled byte code. On the first exe-
cution, the source code or byte code gets compiled to machine code.

CLP programs in ECLiPSe follow three phases. First of all, the ap-
propriate data structure with necessary variables should be constructed in
such a way, that the data structure models the problem in a natural way.
This includes rules to match variables with stored facts. In a second step,
constraints should be applied to the variables. During this step, no back-
tracking should be performed, as that would cause the system to create
new variables. While this is fine for pure Prolog, where facts are unified
to the new variables, it does not work for ECLiPSe programs. Constraints
are attached to concrete variables and do not get attached automatically to
newly created variables by the system, even if the new variable logically
holds the same value. Therefore, a programmer has to be careful about
that. In the last step, a rule has to invoke the solver and tell it which vari-
ables should be instantiated with concrete values. This means, that the
solver enumerates the passed set of variables with the valid range of val-
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ues according to the constraints. Potentially, this trigger backtracks until
a solution can be found. During that phase, the logical unification rules
provide the necessary knowledge such that the solver can relate variables
to each other and to stored facts.

As soon as the system finds a solution, it outputs it and stops searching
for further ones. The choice points, however, remain and the caller has the
option to trigger the solver to search for further solutions. Alternatively,
all solutions can be searched by using the goal findall/3. This produces
a list of all possible solutions. The risk is, that this takes a lot of time as
the search space might be large and the number of valid solutions might
be huge.

2.2 Barrelfish

Barrelfish has the right operating system structure to run on a large, pos-
sibly non-coherent, heterogeneous hardware system. Its structure further
allows deriving policy parameters outside the core operating system code,
a property which is important for the work in this thesis. The thesis there-
fore uses Barrelfish to evaluate the declarative language approach to make
an operating system adaptable to the underlying hardware. The declara-
tive reasoning algorithms in this thesis derive policy parameters which can
directly be used in Barrelfish’s mechanisms. The techniques presented in
this thesis are however not bound to Barrelfish. They can be used in other
operating systems in a similar way if the mechanisms of the operating sys-
tem allow using policy parameters derived outside the mechanism code.

Because the thesis uses Barrelfish to evaluate the declarative language
approach for reasoning about hardware and for adapting to it, this section
explains Barrelfish’s structure and its most important properties relied on
by this thesis.

Barrelfish is a new operating system for heterogeneous many-core sys-
tems written from scratch. It implements a new OS architecture, the mul-
tikernel[17], presented in the next section.
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2.2.1 The Multikernel
The multikernel[17] is a new OS architecture designed for modern and
future heterogeneous many-core systems. It is structured as a distributed
system where one operating system node runs on one specific CPU core.
This structure naturally matches the underlying hardware, which increas-
ingly resembles a network[18]. Furthermore, it naturally supports hard-
ware heterogeneity, as every core runs a separate operating system node
(see section 2.2.2).

The multkernel is guided by the following three design principles:

• Make all inter-core communication explicit

• Make OS structure hardware-neutral

• View state as replicated instead of shared

These three design principles allow structuring an OS in a way that
it naturally supports hardware heterogeneity, scalability and the ability to
adopt distributed systems principles to improve performance and intercon-
nect usage. The multikernel builds the foundation of running on heteroge-
neous hardware. It provides mechanisms to execute tasks on the available
CPU cores, but it does not decide by itself, on which core a task should be
executed. The decision has to be made outside the operating system. This
is one feature on which the work in this thesis relies.

Figure 2.1 shows the multikernel model. The three design principles
are explained in more detail in the following sections.

Make all inter-core communication explicit

The multikernel makes all communication explicit. State is kept com-
pletely local and no memory is shared between code executed on different
cores. Explicit messaging facilitates reasoning about the interconnect us-
age. The knowledge of who is accessing what parts of states and when
it is accessing the state, is exposed. In contrast, a shared-memory-based
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Figure 2.1: The multikernel model

system with implicit messaging, such as the shared memory itself or the
cache coherence messages, does not have this explicit knowledge.

The explicit knowledge of when messages are sent over the intercon-
nect allows creating efficient communication primitives by deriving poli-
cies defining from which source to which destination messages should be
sent. Because it is explicit, messages are only sent as requested by the
policies. Chapter 7 makes use of this explicit communication between
cores.

Make OS structure hardware-neutral

The multikernel is structured such that most of the operating system is
separated from the hardware. Only two aspects are specific to a target
architecture. The first aspect is the message transport mechanism and the
second aspect is the interface to devices and CPUs. Having only these two
aspects hardware dependent, has a number of advantages.

Running the OS on a different architecture with different character-
istics in terms of performance or hardware interface, including message
transport mechanism, there is no radical code change necessary to make
the system work well. Messaging can be implemented as user-level RPC
or on hardware message facilities, in case the hardware supports this fea-
ture. The higher-level interface to the messaging system does not need to
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change, and especially the OS structure does not change, if a new message
transport is used.

Moving to a completely new architecture requires modifying drivers
according to the new hardware interface. In the multikernel model, CPUs
are treated as devices and their device driver is a small kernel, called the
CPU driver (see section 2.2.2). Therefore, it is sufficient to exchange all
drivers and ensure that the appropriate message transport is used to make
the system run on a new target architecture.

In the future, these benefits are increasingly important as diversity in
hardware is likely to grow, which makes it impossible to radically re-
structure the OS on every deployment. A multikernel is prepared to easily
adapt to diverse hardware.

View state as replicated instead of shared

By keeping all state local to every core, there is no shared state at all. De-
cisions are based on local data structures and updates are performed on
the same local data structures. In case that multiple cores have to coordi-
nate and maintain a global view, messages are exchanged between them
to update the same piece of information in the respective local data struc-
tures. By making replication a part of the multikernel, heterogeneity sup-
port comes naturally. Cores with different endiannesses, for example, can
communicate by messages and do not need to take care of the different
endianness, as no sharing occurs. A second advantage is that cores can be
hotplugged or shut down to save power without complicating the mainte-
nance of shared data structures. A limited amount of sharing, for example
between cores on the same package, could be seen as a local optimization
of replication.

2.2.2 A Barrelfish “node”

This section briefly describes Barrelfish’s implementation of the multik-
ernel, because the thesis is about heterogeneity support and builds on the
concrete structure of Barrelfish. Further, the hardware discovery process,
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Figure 2.2: The structure of Barrelfish

described in section 5, requires a basic understanding of the actual imple-
mentation of a Barrelfish node.

Barrelfish is an implementation of the multikernel model. As such,
it runs one separate operating systems node per core without sharing any
memory between nodes. The implementation of an operating system con-
sists of two parts. There is the CPU driver running in supervisor mode and
on top of it, there is the monitor running in user mode. Figure 2.2 shows
the structure of Barrelfish.

The CPU driver is capable of executing privileged instructions. Tradi-
tionally, it would be called kernel, but in Barrelfish, a CPU core is treated
as any other device and therefore the kernel is the driver of a CPU core.
The CPU driver offers a small number of system calls, for example to
map a physical memory page into an application’s virtual address space.
The CPU driver checks first, whether the right to perform the operation
has previously been granted to the application. All state is kept purely lo-
cal to the core, meaning that no memory is being shared with other CPU
drivers. Also, the CPU driver does not perform any communication to
remote cores.

The monitor is the user-level part of a Barrelfish node. It is respon-
sible for maintaining a consistent view of the whole operating system. It
does not share any memory with other cores, but instead uses messages
to synchronize state among the cores. The monitor offers additional func-
tionality to applications. Applications can ask monitors to forward mes-
sages to applications on other cores. Finally, the monitor is able to send
capabilities to a remote core.
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Because neither the CPU driver nor the monitor share memory with
other cores, Barrelfish does not rely on cache coherence. It only needs a
way to send messages from one core to another. This may be implemented
on shared memory, but hardware messaging features may also be used. As
such, Barrelfish is ready to run on future hardware, which is potentially
not fully cache-coherent.

2.2.3 Explicit access to physical resources
This section defines the meaning of explicit access to physical resources
as used in the thesis. It explains the physical resources for which the thesis
implemented policy code and to which the use-cases need explicit access.

Explicit access to physical resources means that the operating system
does not enforce any policies and does not hide the resource behind any
layer. There is no translation of any form and no interpretation of the
resource by the operating system’s mechanisms. Policies are pushed into
application domains like in the exokernel approach[40]. This however
does not mean, that there is no protection. Protection is guaranteed through
mechanisms at the operating system’s level and through hardware support
(for example in the case of memory). The resource requester should decide
which resource, or which part of it, would best suit its needs. Once access
to a physical resource has been granted by the controlling mechanism, it is
the responsibility of the current resource holder to decide how the resource
should be used. The following paragraphs describe each physical resource
directly relevant for this thesis.

The multikernel, in some sense, gives explicit access to CPU cores.
The local CPU driver invokes an upcall interface in user-space, which
decides which computation to execute. This is the mechanism used in
Psyche[84] and scheduler activations[7]. It allows executing code in user-
mode on the specific requested core. Computations are not migrated au-
tomatically and there is no automatic decision process about placing com-
putations on cores. The only policy enforced is basic time-partitioned
scheduling. This makes the operating system code much simpler, as all the
complexity involved in taking placing decisions are removed and pushed
to a separate reasoning facility.
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Access to physical address spaces (including memory, non-volatile
platform data and memory-mapped devices) is controlled by a capabil-
ity system similar to the one of seL4[39, 72]. The memory server in the
operating system manages capabilities. Applications can ask for certain
capabilities (used to allocate memory). Managing capabilities is a mech-
anism which does not decide by itself which ones to return on a request.
External policy code needs to decide which capabilities would best suit
the applications’ needs.

An application, which holds a capability to a range of memory, can
ask the CPU driver (see section 2.2.2) to map it at a chosen free virtual
address in its address space, providing it access to the memory. NUMA-
aware allocation means getting a capability pointing to a page within a
given physical address range. It is a policy parameter which instructs the
memory server to return capabilities for a given range. The policy needs
to be derived outside the memory server, making the memory server code
much simpler.

Likewise, an application, which holds a capability to a memory-mapped
device, can also ask the CPU driver to map it at any free virtual address
in its address space. This gives it access to the device. Device drivers get
safe access to devices using this mechanism.

If an application holds a capability to a device bus (such as the PCIe
bus), it can get access to the configuration registers of all devices. As chap-
ter 6 will show, this allows the PCIe bus driver to configure base addresses
for PCIe devices and bridges.

Only implementing mechanisms and relying on policy code outside
the mechanisms is the right step towards simpler and cleaner operating
systems code and fits well with the goals of this thesis.

2.2.4 Messaging
This section discusses how communication is done in Barrelfish. While
most of the code in this thesis just relies on having messaging, the mul-
ticast tree construction in chapter 7 directly interacts with the messaging
mechanism and therefore requires some high-level knowledge about mes-
saging.
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Barrelfish provides mechanisms to create message channels between
every pair of cores. Two ways of creating a message channel are possible.
First, an application can create a message channel and listen on it for in-
coming messages. This type of channel allows building operating system
services. Second, an application can connect to a message channel offered
by another application. It can start sending commands to the other appli-
cation. Message channels are bidirectional. Once they are set up, both
ends can send messages to each other.

The mechanism of creating message channels does not impose any re-
strictions on the number of channels and the source and destinations. Con-
sequently, it is possible to create several message channels between every
pair of cores. The number of channels grows quickly, which is not desired.
Chapter 7 argues that there is a routing problem within the machine. With
the example of multicast messaging, it shows how to decide on the number
and sources and destinations of message channels to decrease latency and
also the number of channels necessary.

As with other resources, Barrelfish gives explicit access to the mes-
saging mechanisms. This provides a lot of freedom in creating message
channels and makes the message mechanisms much simpler, as no policy
code is intermingled with it. It builds the basis of reasoning about channel
creation and routing of messages in a separate facility.

2.2.5 Drivers and services
This section explains how operating system services and drivers are being
built in Barrelfish and how they export their service to the rest of the sys-
tem. This section presents only the mechanisms of exporting a service, but
does not talk about coordination. However, chapter 4 argues, that a clean
coordination is necessary and that the complexity should be taken out of
the actual service and driver code.

All services and drivers in Barrelfish run in user-mode, as in a tra-
ditional microkernel. Services create a message channel on which they
listen for incoming commands. They register the message channel by a
name and with a name server. The name server has a well-known message
channel which can directly be used for registration and lookups of other
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services.
Basic operating system services have well-known names. Applications

use these names to look up the service’s message channel to start using the
operating system’s services.

Drivers are services which export a device’s functionality to the rest of
the system. They get physical access to a device and are responsible for
initializing and operating it correctly. Drivers are able to send and receive
data from devices. Every driver creates a message channel (as every other
service) on which it waits for commands to be executed on the device.
Every driver registers the channel by a name with the name server.

Bus drivers get access to the configuration space of the bus. They man-
age resource allocations for all devices within the bus and are responsible
for granting safe access to a specific device. Bus drivers export a message
channel by name on which they listen for incoming commands. Device
drivers look up the bus driver’s message channel, connect to it and ask for
access to a specific device.

Starting services and drivers in the right order and resolving depen-
dencies is important for the correct functioning of the system. Section 5
explains, how services and drivers are coordinated in the distributed nature
of Barrelfish.

2.3 Reasoning in operating systems
The section summarizes related work in terms of hardware representation,
hardware configuration, resource allocation and reasoning about resource.

2.3.1 Hardware representation
Operating systems need to manage hardware and have to deal with the
increased complexity. A representation of hardware is therefore an in-
evitable requirement. The representation of hardware is done at different
layers of the complete software stack, depending on the actual system ar-
chitecture. Also, the extent of how much information (hardware and poli-
cies) is exported to user space depends on the system.
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Traditionally, operating systems tried to abstract resources. Concrete
low-level details were kept in the OS and an abstract API was exported to
applications. Together with abstracting resources, the OS applied resource
allocation policies without negotiating with applications. Within the OS
there is however a long history of policy/mechanism separation. For ex-
ample, Hydra[79] applied policy/mechanism separation as an important
design principle.

Commodity OSs and platform firmware increasingly export at least
parts of the resource knowledge to user-space.

Linux exports hardware knowledge through the sysfs file system[94],
and the proc file system. The SKB allows simple hardware queries, simi-
lar to reading the text files in the sysfs or the proc file system. Addition-
ally to reading out information, the CLP-based approach provides a much
more powerful interface allowing its clients to reason about the hardware
in a single query.

Windows exports hardware knowledge in its registry[122]. The reg-
istry is a key-value store which can be queried (and updated) by services
and applications. The query language is however not designed to unify
different pieces of hardware knowledge in the same query as CLP would
allow.

There are a few examples of rich, high-level descriptions of heteroge-
neous hardware resources at the platform level. In particular, the ACPI
and EFI standards have an explicit representation of many board-level re-
sources, and the CIM standard[37] defines a schema for a description of
higher-level resources. It is easy and convenient to inject such representa-
tions into the SKB with the goal of having all information in one place in
a uniform way.

2.3.2 Declarative hardware access and configuration

At the lowest software level, drivers access registers with typically com-
plex bit field patterns. Declarative languages reduce the complexity of
these accesses significantly and reduce errors due to wrong accesses in
drivers.
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Devil[87], an IDL for hardware programming, uses a declarative spec-
ification of device ports (base addresses), registers, and their interpreta-
tion to generate low-level code for device access. This leads to simpler
and more understandable code for device drivers, in an attempt to improve
driver reliability. ATARE[69] uses a series of regular expressions to ex-
tract IRQ routing information from ACPI, without the need for the usual
complex byte code interpreter.

Singularity[123] uses XML manifests to reason about the resources
used by a device driver. These manifests may be analyzed at driver install
time to check for resource conflicts. They also ensure the correctness of a
driver’s interaction with the OS through contracts on message channels.

Prolog has been used in commercial systems such as Windows NT[61]
to derive network configurations: a backtrack-based binding algorithm
takes facts about interfaces of network modules and derives valid con-
figurations, including the correct load order of modules, which it then
stores to the registry. DEC developed a series of expert systems to en-
sure that selected component configurations, that include CPUs and other
hardware as well as software, are valid and components are compatible
to each other[14]. Hippodrome uses a solver to automatically configure
minimal and still performant storage systems by analyzing workloads and
iteratively searching a global minimum[6].

2.3.3 Resource allocation
Resource allocation is a core functionality of every operating system. While
traditionally the policies have been hidden from applications, there were
some attempts to provide information about internal state to applications.
Further, some systems have extensions such that applications can reserve
resources. More recently, systems started to use declarative reasoning to
allocate resources according to applications needs. This section gives an
overview of some related systems.

Infokernel[11] stresses the importance of providing detailed informa-
tion to user space. An Infokernel exports general abstractions describing
internal kernel state to user-space applications to allow them to reason on-
line about the system’s state and internal policies used and to build more
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sophisticated policies on-top of kernel policies to direct those kernel poli-
cies in various ways.

The Resource Kernel[102] is a loadable kernel module which inter-
acts with the host kernel and allows the applications to reserve system
resources which are then guaranteed. The module runs completely in ker-
nel mode and is designed to run together with the host kernel. The main
goal of this work is to satisfy the reservations made by applications on
system resources.

The Q-RAM[109] project is designed to satisfy minimum resource
constraints and furthermore to optimize a utility function to allocate more
resources to applications than minimally required, if available. If an appli-
cation gets more resources than the minimum specified, it adapts itself to
provide better QoS. Searching for optimal solutions is a hard problem[110]
in practice, and quickly becomes infeasible with many applications. Fur-
thermore, the utility function must be statically specified by the program-
mer.

Declarative techniques have also been used successfully to specify re-
sources and resource requirements. Condor[80, 131] allocates resources
in a distributed system from several nodes to distributed computations.
Resources and resource requirements are specified using a declarative ap-
proach. A matching algorithm matches the resource requirement descrip-
tions to actual available resources and derives an allocation from resources
to tasks.

Helios[98] tackles heterogeneity by running satellite kernels on het-
erogeneous cores. Satellite kernels are light-weight runtimes which run
on peripherals and provide a limited set of functionality. System calls
implemented in the coordinator kernel are executed on the host PC. He-
lios needs to decide where to run functionality. Is uses manifests which
declaratively define positive or negative affinities on a per channel basis
to guide the placement of processes to CPUs in a heterogeneous system.
The affinities define, whether the application benefits from zero-copy mes-
saging or whether it prefers to avoid any interference. Using the affinity
manifest, Helios places the application by considering the affinity manifest
and hardware utilization.

The Hydra framework[139] uses a declarative approach to reason about
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available hardware resources in a heterogeneous system consisting of CPUs
and programmable offload devices on which tasks can be executed. Using
an XML-based description language, the Hydra framework selects suit-
able devices to which it places executions of functionality, thus achieving
greater utilization of processor resources while reducing the complexity
for the programmer.

2.4 Declarative reasoning in networks
Declarative reasoning in networks is related to the work in this thesis, be-
cause first, Barrelfish has a distributed-systems like structure and second,
the multicast tree construction presented in chapter 7 reasons about the
network-like hardware and constructs to construct a multicast tree. The
section therefore summarizes some related work of the networking field.

Rhizoma is an overlay which deploys distributed applications to a set
of nodes in the internet[142]. It declaratively reasons about network links
and offered features of the nodes (such as CPU, memory or available disk
space). It tries to satisfy application requirements, which are also given
in a high-level declarative way. Based on hardware knowledge (nodes,
links) and application requirements it decides on the number of nodes and
locations to use for deployment.

COOLAID is a system which declaratively manages network configu-
rations in the increasingly difficult to manage large networks[29]. It cap-
tures knowledge from device vendors and service providers as well as on-
line status information in a formal and uniform way. Declarative queries
allow deriving valid network configurations and support network operators
to run a large network.

Declarative routing allows the implementation of various routing pro-
tocols with few lines and therefore low code complexity[82]. This is a
step towards easier deployment of new routing protocols, which makes
the overall network more extensible while still guaranteeing robustness.
Somewhat similar, but in a completely different environment, a declara-
tive query constructs the multicast tree in chapter 7.

In the context of the Semantic Web, the resource description format
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(RDF)[138] is widely used to represent and reason online about resources.
RDF is a model to describe resources in a machine readable way and was
originally designed for the Web. It extends the linking structure by named
relationships in order to support automated reasoning about the content of
semi-structured data. RDF is expressively almost equivalent to the logic
programming approach (ignoring the constraint and optimization exten-
sions).

2.5 Summary
In this chapter I explained that declarative languages can reduce the code
complexity involved in reasoning about complex hardware in order to de-
cide how to adapt to it. This makes declarative languages interesting in an
operating system targeting heterogeneous hardware. Policy code, which
decides how to adapt to hardware, can be implemented at a high level by
describing the desired solution to be achieved.

Especially constraint logic programming is interesting in that context.
First, the logical reasoning allows deriving knowledge about the hard-
ware. Second, the constraint solver helps to model resource allocation
algorithms, because resource allocation often means relating resource re-
quirements to each other. This can easily be modeled as constraints.

To evaluate, whether this technique works, I use Barrelfish, because
its mechanisms’ behavior can be directly influenced by derived policy pa-
rameters.

The next chapter explains the design and implementation of the SKB,
the reasoning facility used for this thesis.



Chapter 3

The system knowledge base

The previous chapter claimed, that high-level declarative languages are
suitable to deal with the complexity involved in operating systems that
are adaptive to heterogeneous hardware. To evaluate this, I built a real
reasoning engine for Barrelfish, on top of which case studies prove the
claim.

This chapter presents the system knowledge base (SKB). It is the main
facility for reasoning about hardware and software state in Barrelfish. Af-
ter a short introduction, the chapter defines how the term knowledge is used
in this thesis and gives some motivating examples of knowledge process-
ing in an operating system. It further presents the design principles and
and the implementation, before explaining how the operating system and
applications can use the SKB. Finally, the chapter presents an evaluation
of this main facility.

The system knowledge base (SKB) is a user-level OS service which
provides a rich representation of the hardware in a high-level declarative
way[118]. The goal is enabling system services and applications to adapt
the currently underlying hardware by incorporating deep hardware knowl-
edge to improve performance and optimizing resource consumption by
using devices and resources in an appropriate way.

39
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3.1 Introduction
As stated in section 1.1, hardware becomes increasingly complex and di-
verse. It is essential that system software and applications automatically
adapt to the underlying hardware. Manual tuning of software for a specific
hardware system is not possible anymore. Instead, the operating system
has to learn about the underlying hardware. It has to gather information
about the hardware during runtime first and then it has to reason about it
and to adapt to it according to the gathered information. Because the hard-
ware becomes more complex, the operating system has to learn as many
details as possible about every single device and all connections between
several devices. This leads to a big amount of data which has to be in-
terpreted in an accurate way. Obviously, the complexity of interpreting
fine-grained detailed data in many different contexts is a complex task.
Ideally, the complexity should not be repeated in every system component
and especially not in every application. There should rather be a service
which transforms data into context-specific knowledge. Clients of this ser-
vice should be able to ask high-level questions and should get the desired
knowledge in response. This alleviates applications from the burden of
interpreting low-level data themselves.

Although most of the complexity can be pushed to such a service, it is
important to keep the code complexity as small as possible also in the ser-
vice itself. Readability and maintainability of code with low complexity
is much higher and results in fewer bugs. Basing the service on high-level
declarative facts representing information in a specific context and run-
ning high-level declarative algorithms describing a desired solution enable
programmers to write concise, understandable and maintainable code. As
described in section 2.1.3, CLP allows writing high-level declarative code.
Rules can be formulated based on stored facts, on variables and on con-
straints between variables leading to a description of the problem or actu-
ally of the desired solution. Due to this reason, CLP is the programming
paradigm of choice for this thesis.

This chapter presents the system knowledge base (SKB), the central
OS service responsible for storing and managing hardware knowledge and
for executing reasoning algorithms. The SKB allows adding knowledge in
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a high-level declarative way. Furthermore, it allows the uploading and
executing of declarative algorithms based on stored facts and additional
input parameters.

The SKB’s architecture allows future extensions. It is not at all pos-
sible to include all the policy or knowledge code from the beginning in
the SKB. In the future, new hardware types and new devices will appear.
Additional facts need to be added by external modules and new declara-
tive algorithms need to be added as well. The SKB must allow external
modules to provide further facts, knowledge or policy code for specific
scenarios. By choosing an architecture where the core provides the basic
infrastructure to add facts, upload policy code and allow for querying, ex-
ternal modules can be built around it and add their own facts and policy
code, which again will be made available for the rest of the system.

This chapter explains the SKB’s architecture and design principles. It
further describes how clients add facts and how they upload and execute
algorithms in the SKB. The chapter also discusses advantages and disad-
vantages of this approach.

Parts of this chapter have been published[116, 117, 118]. A tutorial
describing how to get a basic application running with the SKB can be
found on the public Barrelfish wiki[16].

3.2 Background
This section defines the term knowledge used in the context of this thesis.
The term knowledge appears throughout the whole thesis and is a key point
of it. After the definition, the section gives an overview of different types
of knowledge bases to put the system knowledge base in context.

3.2.1 Knowledge

Data, information and knowledge

The realm of knowledge in knowledge engineering covers a range of spe-
cific concepts[97]. In the context of this thesis, knowledge refers to three
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of these concepts: knowledge storing (knowledge base), knowledge repre-
sentation and knowledge application (reasoning)[97]. Knowledge is based
on information which itself is based on data. Niederliński defines the three
terms data, information and knowledge in the following way[97]:

• data is given by 0/1 vectors. These vectors represent numbers, let-
ters, signs or more complex structures including pictures or sound.
Data vectors are typically classified in data types such as bytes,
chars, floating point values, arrays or structures. Data is a result
of measurements, human interactions or processing of existing data.

• Information = data + meaning of data + purpose of data. Informa-
tion is therefore a purpose-oriented set of meaningful data. Infor-
mation is stored in some form of databases. It appears as a result of
some target-oriented action.

• Knowledge = Information + goal + ability to use information to
achieve goal. Knowledge refers therefore to information relevant
to some goal and the ability to process the information in a way to
achieve the goal. Knowledge is represented by a set of facts, rules
and mathematical models.

Knowledge in the system knowledge base

In this thesis, data is often a result hardware discovery by a data gathering
process running in the OS. It queries the underlying hardware and gets out
a lot of data, which it stores in the system knowledge base and which has
to be interpreted and used to achieve specific goals later on.

Information in the context of this thesis is typically a result of some
driver which understands the meaning of the data belonging to a specific
device. The driver knows how to use this data and therefore there is a
purpose for the data in the context of the driver.

To reason about the hardware and take smart decisions, declarative
algorithms are implemented based on information stored in the system
knowledge base. The purpose of the algorithms is to fulfill a specific goal
based on the information. It knows how to use the information to reach the



3.2. BACKGROUND 43

goal. The algorithms are typically executed by specific drivers, resource
managers or other operating system modules. For example, drivers have
a specific goal, namely to correctly initialize and operate a device. This
includes correct hardware resource allocation. Drivers, and especially the
algorithms used by them, gain knowledge about hardware by using in-
formation and transformation rules to achieve the goal. One of the most
complex representatives is the PCI driver (see chapter 6). Its goal is to
allocate conflict-free physical addresses to all devices while meeting com-
plex hardware requirements. It uses PCI information and knows how PCI
allocation works.

3.2.2 Knowledge bases
This section shows that there are different interpretations of the term knowl-
edge base possible. Because the thesis implements a knowledge base, it is
important to define what type of knowledge base the thesis refers to.

The purpose of a knowledge base is storing, organizing and managing
knowledge. An interface allows clients to query the knowledge base and
retrieve answers to specific questions. The two main types of knowledge
bases are human-readable knowledge bases and machine-readable knowl-
edge bases.

Human-readable knowledge bases provide information to users in form
of text, tables or figures. A human may search for specific keywords
or may follow a predefined structure of categories until he reaches the
knowledge item of interest. “Frequently asked questions” (FAQs) pages
are an example of human-readable knowledge bases. Users read through
FAQs and try to match their question with the answers given in the FAQs.
Organizations might provide human-readable knowledge-bases in their in-
tranet, such that users learn about infrastructure, for example. A knowl-
edge base of this form might be organized as a hierarchy of categories.
The user selects one of the top categories according to what he needs to
learn or lookup and follows down a tree which allows him to select increas-
ingly fine-grained subcategories until he finds the item of interest. Another
form of human-readable knowledge-bases are used to support users using
a company’s product. The Microsoft knowledge base[92] is a human-
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readable knowledge base providing specific technical knowledge to users
of Microsoft’s products. A user can search through the knowledge base
to find desired entries. A single webpage contains information regarding
the searched keywords. The user reads through the page to get an answer
to his question. Similarly, Apple[9], Mozilla[95] and many more provide
knowledge bases to support their users in many scenarios.

Machine-readable knowledge bases provide knowledge in a form, that
a machine can reason automatically about and take decisions based on this
knowledge. Classical deductive reasoning can be used to start from a set
of given facts to reach a logical conclusion. Rules define how facts can be
transformed and combined such that the logical conclusion can be reached.
Machine-readable knowledge-bases are often used in artificial intelligence
to reason about available facts and to take decisions based on them. Expert
systems[14] take decisions based on facts like a human expert. They con-
sist of a machine-readable knowledge base and a reasoning engine. The
reasoning engine reads the machine-readable facts, applies rules as de-
scribed by a programmer and deduces new knowledge. There are systems
which use machine-readable knowledge bases and reasoning engines to
decide on further steps to be taken based on current knowledge. Rhizoma
decides how many and which servers it needs to acquire from the network
to reliably run an application meeting the user’s requirements on latency,
connectivity and availability[141, 142]. The Microsoft Registry[122] con-
tains machine-readable information about hardware, software and various
configurations. While the Registry does not directly contain a reasoning
engine, the operating system has the possibility to read facts identified by
keys from the registry.

The system knowledge base in this thesis is clearly a machine-readable
knowledge base. Algorithms rely on machine-readable information and
automatically derive new knowledge by applying transformation rules and
unification.
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3.3 How does the SKB help the operating sys-
tem?

It is necessary to know the exact role of the SKB in the operating system.
This section defines the SKB’s purpose followed by some supporting ex-
amples. It further lists common patterns found in problems, for which the
SKB is a suitable facility to solve these problems. Finally, the section pro-
vides a guideline according to which one can decide whether it is worth to
model a concrete problem in the SKB.

3.3.1 Purpose

The purpose of the SKB is providing a general storage for high-level
declarative facts as well as an execution environment to execute declar-
ative algorithms. The goal of the SKB is to serve as a central point where
the OS, drivers and applications collect all information which might be
interesting not only for themselves, but also for other modules. The SKB
provides a uniform and standardized way of querying hardware informa-
tion and software state to OS components and applications. By using high-
level facts, services and applications do not need to know specific details
about how to get access to information registers of devices. They also do
not need to worry about how to interpret hardware information, which is
usually provided as bit fields in registers. High-level facts provide the in-
formation of interest in a register-layout-independent way. Facts are there-
fore easy to read by machines, and even by humans, and they always have
the same format, independently of how the hardware manufacturer decided
to expose the information on the particular piece of hardware by registers.

Another purpose of the SKB is forming a basis to build reasoning algo-
rithms. These algorithms describe a higher-level problem based on stored
facts. Additionally to stored facts, parameters can be passed to algorithms.
Parameters are the better choice over stored facts, if their values change
quickly. On top of stored facts, rules combine several facts to produce
new, high-level knowledge. This new knowledge can be further processed
by higher-level reasoning algorithms which describe a complete problem.
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Generally, the reasoning algorithms enable system software and applica-
tions to take informed decisions on how to make best use of available
hardware resources.

3.3.2 Examples
So far, the description of the SKB and its purpose was rather abstract
and generic. In this section, I sketch some basic examples of information
which goes into the SKB.

The cache is an important part of the hardware which significantly af-
fects software’s performance, depending on whether it is used the right
way or not. Cache information is provided by the SKB as high-level facts,
which means that properties such as cache size, cache line size, level or
associativity can be queried independently of the actual CPU architecture.
It is the SKB’s responsibility (together with its datagathering services de-
scribed in section 3.5.3) to get the information using the appropriate low-
level mechanism. On x86 CPUs, the cpuid instruction provides cache in-
formation in an encoded way, while on other architectures there are other
low-level mechanisms to gather low-level data or the information might
even come from online measurements instead of information registers. At
the end it does not matter to the clients, how the cache facts were pro-
duced, as long as the client can query the SKB for cache line sizes, as-
sociativity and other properties important to the application in a uniform
and abstracted way. The schema in section 3.5.2 shows (among other fact
formats) the concrete representation of cache information.

Section 3.3.1 mentions that quickly changing values should rather be
input parameters to reasoning algorithms instead of stored facts. The cur-
rent CPU utilization is one example of information which changes quickly.
It is better to pass this value as argument rather than storing and constantly
updating it as fact in the SKB.

NUMA-aware allocation makes use of a simple reasoning algorithm.
Finding the destination core’s NUMA region involves combining the core’s
affinity domain with the memory region’s affinity domain. The reasoning
algorithm in the SKB derives an allocation policy which gets passed to the
actual memory allocator. The memory allocator only provides the mecha-
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nism of allocating memory. With the derived allocation policy in the SKB,
the memory allocator can be instructed to allocate memory from a specific
range (which is not necessarily the calling core’s local memory).

Not only memory appears in the physical address range, but also many
devices export their registers through a memory mapping to be set up
by the operating system. Algorithms to derive policies on where to map
which device run in the SKB based on facts about available physical ad-
dress space and facts about device properties and their dependencies. PCIe
allocation is one of the most complex problems of allocating physical ad-
dress space. A detailed description of the PCIe configuration and its policy
code to derive physical address allocation based on available address win-
dows and device requirements is given in section 6.

The SKB derives not only lower-level policies, like memory and phys-
ical address range policies, it also derives policies for complete higher-
level problems described in CLP. As an example, applications describe
what properties in terms of hardware resources they would like to meet. A
high-level description of application requirements and available hardware
allows the OS to derive a core to application mapping. Chapter 8 describes
in detail how global knowledge about running applications and hardware
in the SKB is used to derive CPU core allocation policies.

3.3.3 Common patterns of resource allocation descrip-
tions

The use-cases often have similar patterns in describing the desired re-
source properties. Often, problems need a description of numbers, ad-
dresses, address ranges and dependencies between them. The most generic
description starts without assuming any concrete values. This means, the
problem description starts with variables representing the numbers, ad-
dresses and ranges. Constraints between them relate the variables and de-
scribe their dependencies in a way, which is abstracted from concrete val-
ues. The variables often describe physical address ranges, RAM, NUMA
nodes, number of cores or a cache hierarchy.

For example, bus and device drivers, which need to configure ad-
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dresses and resources for devices, describe their allocation problems sim-
ilarly to placing algorithms, which need to place applications on cores
and NUMA nodes. Both types of algorithms operate on addresses or
address ranges representing resources such as RAM or physical address
regions. The concrete allocation of an address range depends on many
factors which in fact limit the possible address set per resource. In fact,
addresses are integers and hardware or software given limitations on sup-
ported address ranges are constraints on these integers representing ad-
dresses. Hardware resource allocation has often hardware given constraints
and clear allocation and dependency rules, such as address alignment re-
quirements or dependencies on other allocations.

In contrast to mechanism code, complex allocation algorithms only ex-
ecute once in a while. The algorithms derive policy parameters which are
valid longer term. Mechanism code operates in the fast path of the system.
Mechanisms consider policy parameters to take fast decisions. By sepa-
rating policy from mechanism code and running policy code in the SKB
off-fast path, system performance does not suffer from a high execution
time of the policy code, as long as mechanism code works properly on
previously derived policy parameters1.

Furthermore, it is often desirable, that policies and mechanisms are
clearly separate. CLP not only allows describing various allocation poli-
cies such as physical address ranges for devices or core to application al-
location, it also naturally leads to a clear policy/mechanism separation.
While CLP allows describing allocation policies, it does not have direct
access to the mechanism code and even less to registers. The use of the
SKB for policy code enforces the programmer to think about a clear poli-
cy/mechanism separation.

To summarize, as long as allocation algorithms operate on integer val-
ues and as long as there are clear allocation rules constraining the possible
set of addresses and modeling dependencies between them, CLP is a per-
fect match for implementing complex algorithms at a low code complexity
for the programmer.

1High execution time means in the order of tens of milliseconds, as the concrete use-cases
will show.
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3.3.4 When to use the SKB

At a high-level, the SKB should be used whenever knowledge processing
is involved. OS components, drivers and applications should make their
part of knowledge available to other parts of the system. Likewise, the
SKB should be used whenever hardware knowledge or high-level software
state needs to be queried. Ideally, policy code should be implemented
in the SKB, as long as the problem can be described using clear rules.
The SKB has a global view and its high-level language reduces the code
complexity. Also, this leads to a natural policy/mechanism separation.

To answer the question of whether to use the SKB in a more general
way, I identified a number of characteristics of formulating problems that
may apply. In the following paragraphs I discuss the general properties of
a problem that may suit a CLP-based solution. If most of the following
characteristics apply, a CLP-based solution may be appealing:

Configuration parameters need to be allocated from a constrained re-
gion For example, if there is a set of smaller address regions that need to
be allocated from a bigger available address regions, the base address of
every region can be translated to a variable to be assigned a concrete value
by the CLP program.

Parameters have clear constraints If the configuration parameters have
clear constraints (for example, natural alignment), these can easily be ex-
pressed as a CLP constraint.

Dependencies between parameters If there are dependencies between
multiple parameters (for example, the placement of address regions de-
fined by base and size parameters, such that position of one region influ-
ences where others can be placed), it is a good idea to use CLP. Constraints
allow expressing these dependencies before concrete values are assigned
to variables, leaving great flexibility in parameter allocation while still
meeting the dependencies.
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Permutations of configurations If meeting dependencies between con-
figuration parameters might cause a large permutation and reassignment
of other parameters, CLP can handle this cleanly by first collecting and
considering all constraints, before assigning concrete values to variables.
The imperative alternative would be to search for valid permutations by
backtracking, which might be too expensive, and easily leads to complex
code.

Handling special cases natively and cleanly Handling special cases
in an imperative language often becomes messy quickly, because they
are usually treated as workarounds added to the core code. By contrast,
CLP allows additional constraints to be assigned independently of the core
search logic, simplifying the treatment of special cases.

3.4 Design
This section describes the design of the SKB. The section starts by explain-
ing the design principles, because they guided the overall architecture. Un-
derstanding the overall architecture is a requisite to correctly interact with
the SKB. It further describes the possibilities of adding facts and the role
of algorithms. Finally, the section talks about security.

3.4.1 Design principles

The design of the SKB is guided by a list design principles. The following
paragraphs list and explain the design principles in detail.

The SKB should be the central knowledge engine. The SKB should
allow every system component and application to add, query and modify
facts. If it is used as the central knowledge engine, it provides a global
view of the overall hardware and system state. Consequently, the SKB is
designed as a service such that clients can connect to it and interact with it
through a well-defined interface.
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Provide high-level uniform information. The information should be
provided in an abstract, easy-to-use and uniform format. The format of
the information should be independent of the actual mechanism used to
gather the information. It should also be easy to search information and
match pieces of information with known values. While the SKB offers a
high-level RAM-based storage for information, it is also the client’s re-
sponsibility to prepare the information in a machine-independent format,
before storing it to the SKB. Furthermore, the SKB has to support reading
files with a priori knowledge from data sheets. The files should contain
knowledge in the same high-level format.

Allow uploading and executing of declarative algorithms. The SKB
should allow clients to upload application-specific policy code to the SKB.
The code has to be declarative and should describe problems based on
stored facts and additional input parameters. Algorithms can create vari-
ables, match them to facts or constrain them based on facts stored in the
SKB. The SKB tries to assign values to variables such that constraints and
relations on variables and stored facts can be met. The SKB allows clients
to execute algorithms within the SKB and retrieve the results.

The SKB serves as a policy engine. The SKB provides a basis to im-
plement policy code. It does not itself enforce policies and it provides no
mechanism to apply derived policies. Security or register access, for ex-
ample, have to be implemented outside the SKB. Furthermore, the SKB is
reactive as in a classical server approach. It does not execute by itself. It
only acts on behalf of clients.

Expressiveness. The SKB should not impose restrictions on the format
and types of knowledge added to its storage. Also, it should not restrict
algorithms in what they want to express. Instead, the SKB should support
algorithms to be as expressive as possible. The SKB needs to support stor-
ing knowledge of current and future hardware, no matter, how complex
hardware will be in the future. Likewise, the SKB should support any rea-
soning algorithm, even if it has to express complex relationships between
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several facts in the future. A flexible and expressive query and update
language is needed to retrieve the information stored in the SKB. Clients
of the SKB should be able to express exactly what information they are
interested in or how to add new data or update existing data.

Provide a convenient high-level interface to clients. Since the SKB is
the central point of knowledge, it should be convenient for clients to add,
modify and query facts by means of a high-level interface. The interface
must be expressive enough to add detailed information about hardware
and to add fine grained performance data from online measurements. The
interface should also provide a simple mechanism to upload algorithms
and execute them within the SKB. It should also allow to directly posing
constrained optimization queries on stored facts and input parameters.

Policy/mechanism separation. As already mentioned, the policy/mech-
anism separation is a main enabling factor for simplifying operating sys-
tems code in this thesis. In fact, for all use-cases in this thesis the separa-
tion allowed the implementation of readable small and clean mechanism
code as well as readable small and clean policy code. Furthermore, the
mechanisms should work correctly without querying the SKB on the sys-
tem’s fast path. The clear policy/mechanism separation enables the system
to use mechanisms on the fast path while executing policy code once in a
while on an off-fast path. The high-level language basically enforces pol-
icy/mechanism separation.

The SKB should be machine independent. More precisely, the way
of adding knowledge and the language, in which algorithms are imple-
mented, should be machine-independent. Two properties are important to
meet this requirement. First, if knowledge is described as uniform facts,
it does not matter of what type the machine architecture is. High-level
PCI knowledge (like base addresses and sizes) are the same on x86 and
Sparc64, for example. Second, if algorithms are implemented in a lan-
guage running on top of a language runtime, the algorithms are not bound
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to a specific architecture. The high-level declarative code will be compiled
at runtime to the specific underlying machine.

Data structures should be extensible. It should be straightforward to
extend data structures in the SKB. Together with those extensions, algo-
rithms need to be adapted as well.

The SKB should be modular. It should be easy to build additional func-
tionality around the SKB. This includes support libraries, additional inter-
action mechanisms, data providing functionality and services built on top
of it.

The SKB has to be able to boot early on system boot-up. Because
the SKB is a central knowledge engine, it is used to configure hardware,
which is an early task of an operating system. Hardware discovery and
configuration as well as booting cores, finding memory regions and coor-
dinating boot-up of most of the system is based on SKB information. The
SKB therefore needs to be self-contained and as independent as possible
from other system components.

Support concurrent access. On a manycore system, there is obviously
a lot of concurrency. Since the SKB is a central point of information and
there will be many clients interacting with the SKB at the same time, there
will be concurrent access. The SKB must implement some synchroniza-
tion to allow concurrent access in a safe way.

3.4.2 Overall architecture
Based on the design principles, the SKB is a self-contained user-level re-
active OS service providing the facility of storing knowledge and running
algorithms. Figure 3.1 shows the overall design of the SKB and its inter-
actions with other modules.

The SKB is the central point of the complete knowledge infrastructure.
Around the core SKB service, discovery and monitoring modules provide
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Figure 3.1: Overall system design

information and store them as high-level facts to the SKB. Device man-
ager and resource manager closely interact with the SKB by adding and
deleting facts and running algorithms within the SKB, whenever needed.
Complex device drivers, such as the PCI driver, store all device related
information at discovery time to the SKB and finally execute policy code,
like, for example, an allocation algorithm within the SKB. Applications
can directly query the SKB for information about the hardware, such as,
for example, cache hierarchies. Managed language runtimes may opti-
mize applications execution by querying the SKB and by combining the
hardware knowledge with the internal knowledge of the application.

Apart from the SKB and its clients, there are libraries, event mech-
anisms, standard query functions and standard data-gathering modules
available to facilitate the interaction with the SKB and to provide a base
set of data and queries.

To ensure, that the SKB can serve as a policy engine to run hardware
configuration algorithms early at the startup of the system, it is built as
a statically linked and completely self-contained service. It runs from a
RAM disk on which the base algorithms are stored. Unlike a physical
disk, the RAM disk is accessible even before any hardware is configured.



3.4. DESIGN 55

3.4.3 Core

The SKB is a single-threaded event-based OS server. It is only reactive
and does not perform any operation by itself. Upon a request, it performs
and action and returns the result. In contrast to the base server, event-
mechanisms such as Octopus, (see section 4.3) built on top of the core,
may actively send asynchronous notifications on changes to stored facts.

The SKB embeds a CLP language runtime such that expressive algo-
rithms can be implemented by clients and executed within the SKB on
behalf of them. The CLP language runtime does not restrict the format
of stored knowledge nor what an algorithm may express or compute. The
only restriction is that the syntax of facts and algorithms is correct accord-
ing to the CLP language. As discussed in section 3.8.2, this freedom is a
nice feature for a research system, but it is a risk for a production system.
There are, however, solutions to this problem.

The core of the SKB exports three basic services. First, the SKB pro-
vides storage for facts. Facts are kept in memory as long as the SKB
is running. The SKB gets populated by external programs whenever the
system boots up. There are different sources from which the SKB gets
populated. Most of the facts are added by discovery and monitoring mod-
ules through the exported interface. A second method is to let the SKB
load a file of facts into its memory-based storage. This is especially useful
for facts which can only be known from data sheets. An example are PCI
IDs to driver binary mappings (see section 5.1.2).

Second, the SKB allows executing queries of the facts. Single facts
can be queried by matching the fact name and providing variables for the
fields belonging to the fact. Queries can be built in a way that only fields
of interest are returned as the result, instead of returning complete facts.
Queries can also construct results by taking parts of information from dif-
ferent facts. Fields of different facts can be unified to each other. A typical
scenario includes an equality join where one field is available in at least
two facts. Unifying this field of both facts provides corresponding fields
of both facts as a result. A query can combine fields od different facts
to a new fact. It can arbitrarily name the new fact and add the desired
number of fields to the new fact. It may or may not store the new fact to
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the SKB. In most scenarios it does however not make sense to store these
constructed facts, as they can always be reconstructed again. Storing them
would require updating them, in case the base facts change. Queries do not
change the state of the SKB by themselves. Queries are read-only. Only,
if the client instructs the SKB explicitly, the SKB’s state can be changed.
Storing newly created facts explicitly, or deleting facts explicitly, are two
ways of changing the SKB’s state.

Finally, the SKB allows loading and executing algorithms from a file
or through the interface on behalf of an OS service or an application. The
algorithm gets stored in the SKB’s memory. It can be called by name at
any time after it is loaded. Algorithms can use any available facts. Ad-
ditionally, input parameters can be passed to the algorithm whenever it
gets called. The caller also passes variables to construct the output of the
algorithm. The caller can define the format of the output in an arbitrary
way.

3.4.4 Interface
The SKB exports a simple string-based interface through which facts can
be added, queries can be sent and algorithms can be called. A string-based
interface does not impose any restrictions at all, which is one of its de-
sign principles. Whatever the embedded language runtime supports, can
be sent through the interface. While for a production system it may be
desirable to restrict the interface, it is a perfect interface for a research sys-
tem. It allows exploring many different techniques and algorithms without
complicating the interaction with the SKB.

The basic interface to the SKB is based on messages (see section 2.2.4).
The interface allows the sending of any string to the SKB. Results are re-
ceived in form of strings as well. Additionally, the interface returns an
error number and a string containing the error description back to the call-
ing client. The client should therefore always check the error number for
possible errors.

For this thesis I chose to implement a blocking interface to the SKB.
Consequently, a call to the SKB blocks the client as long as the SKB is
still executing the client’s request.
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The single-threaded nature of CLP makes it almost impossible to exe-
cute several requests at the same time without adding additional external
mechanisms. A blocking interface, where one client after each other is
serviced, naturally synchronizes executions of the calls. This facilitates
the implementation of the request handling dramatically. The drawback is
that clients do no useful work while they are waiting for a potentially long
running query. Obviously, an asynchronous interface would allow clients
to do useful work while they are waiting. It would still be possible to ex-
ecute one query after each other. The SKB would need to buffer requests
and remember request-to-client mappings. It would dequeue one request
after each other, execute it and upcall the client with the result.

There is a second reason, why executions cannot easily be parallelized.
Every execution of an algorithm potentially accesses every fact and poten-
tially modifies every fact. If multiple algorithms execute at the same time
(even in separate processes), there might be conflicts between algorithms
reading facts and algorithms trying to update the same facts. Isolation
mechanisms, like the ones used in database management systems, would
be necessary to guarantee data consistency.

Since the SKB should be used off-fast path, blocking a client for the
time of a request should not harm, especially for the conceptual research
in this thesis. Clients which wish to continue processing while waiting
for the result, can create a separate query thread. In this case, the main
thread can continue executing while the waiting thread blocks. It is the
client’s responsibility to prevent multiple threads from calling the SKB
concurrently.

The exported interface is the basic mechanism to communicate with
the SKB. It only allows sending and receiving strings, but it neither helps
to produce the right query strings nor to parse result strings. A client
library builds on top of this basic interface and provides many convenient
functions to assemble query strings and parse and interpret result strings.
I explain the client library in section 3.6. Most clients should be fine with
the client library, but in any case, they can always use the basic interface.
The basic interface is defined the following way:
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interface skb "SKB RPC Interface" {

rpc run( in string input,

out string output,

out string str_error,

out int int_error);

};

The parameter input refers to the input string. This can be any query,
update or algorithm call in string form. More generally, it may be any
string which is a valid input to the CLP system. As the interface does not
restrict the input, a client might instruct the CLP system to behave in a cer-
tain way, depending on what special input string the CLP system supports.
The parameter output refers to the output generated by the query or al-
gorithm. The output is exactly as the CLP system produces it. The query
or algorithm should create an output in a suitable way for the client. Even
though the client has complete freedom to generate arbitrary output, there
are some conventions, if it wishes to use the client library to parse the out-
put. If it violates the conventions, it has to parse the output itself using the
basic interface. In case of an error, str error contains the error message,
as the CLP system produces it. int error is the return value of the CLP
system invocation in the SKB. The concrete meaning of the return value
depends on the CLP system. Whether the error string contains additional
information also depends on the CLP system used. As explained in sec-
tion 3.5, this thesis uses ECLiPSe as CLP system. Therefore, the meaning
of return values and error strings are defined by ECLiPSe. A value of zero
is a successful invocation of the system while every other value indicates
an error.

3.4.5 Facts, schema and queries
The SKB does not enforce any fact format nor does it come with a pre-
defined data schema. Clients can add facts in a format that suits them.
Likewise, clients implicitly define the data schema by adding facts with a
certain number of fields2. The only restriction is that facts must be syntac-

2Fields are like attributes in a database scenario.
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tically correct according to the CLP system.
The advantage of such a flexible schema is that applications can start

using the SKB as data store and policy engine without modifications nec-
essary to the data schema. This is especially useful for applications, be-
cause there is no in advance knowledge what kinds of applications will
be executed on a machine. Additionally, applications are developed by
people outside the core team.

The risk of not having standardized the data model is that it gets messy.
Data may be replicated in a different format or it might be unclear how to
query existing data.

It is a tradeoff between flexibility and keeping the SKB clean. In this
thesis, the focus is on the feasibility and usability of having an SKB at all,
rather than on how to create a clean data model and how to enforce and
maintain it.

The correct syntax of queries is defined by the CLP system as well.
Because the SKB provides a string-based interface, there are no restric-
tions of implementing algorithms. Only, they must be correct according to
the CLP system.

3.4.6 Data gathering
Before the SKB can answer queries about hardware properties or software
state, it needs to be populated with detailed information. Because the SKB
is a purely reactive OS service, it does not perform data gathering on its
own. It has to be populated with facts by external programs such as bus or
device drivers and applications.

I identified three ways of populating the SKB with information[118].
The first way results from resource discovery, such as traversing ACPI
tables, enumerating and monitoring the PCIe or USB bus, and by querying
registers of specific devices. Resource discovery and monitoring is done
by drivers, which understand how to query specific pieces of hardware
and how to store high-level general facts to represent the information in
a generic, but still detailed way. This is an ongoing process, as devices
may be hotplugged or removed, in which case the information in the SKB
needs to be updated.
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Online measurements, such as cache and memory latency measure-
ments, are a second source of information. Measurements provide a view
of hardware characteristics, as an application experiences them when it
is running on this hardware. This derived logical topology view of the
hardware does not necessarily correspond to the actual topology on every
machine. As an example, the topology of the 8x4 cores AMD machine,
as illustrated in figure 3.2, implies that running the network driver code
close to the network interface card (NIC) and allocating packet buffers on
this same node leads to the best performance in terms of UDP echo net-
work throughput. The measured network throughput in this configuration
in figure 3.2(a) is 668MBit/s. However, the measurements show that the
packet buffer should be allocated as in figure 3.2(b). This leads to a net-
work throughput of 888MBit/s. In this case, the actual topology does not
correspond to the derived topology based on the measurements. It is there-
fore important to not only learn about hardware by resource discovery, but
also to learn the concrete behavior through online measurements. Only
this provides a realistic view of the machine and shows how an applica-
tion experiences it.

Finally, there are cases where a priori knowledge derived from device
data sheets has to be asserted, as there is no way of discovering infor-
mation details at runtime. Device type information or a serial number of
the device is sufficient to load a facts file providing a priori knowledge
about this specific device. As an example, the datagatherer presented in
this thesis uses the cpuid instruction on x86-based architectures to gather
information about the cores and caches. This returned information has
to be interpreted based on datasheets which match the current processor
architecture.

It is obvious that device drivers should be responsible to add informa-
tion about their devices. They know best how to access device registers
and how to discover device properties and features. This is also the case
for bus drivers. The PCIe bus driver is basically a device driver which
knows how to handle the PCIe configuration space and how to derive facts
for the SKB. It does not need to know details about every device, as the
concrete device driver can take over the responsibility of adding further
details of the device it is taking care of.
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Figure 3.2: Measured Topology vs. actual Topology: The measurements
imply that the rightmost bottom node is closest to the NIC.
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There are however cases where the responsibility of adding facts to
the SKB are less obvious. Measurements of the memory hierarchy is a
good example. The memory system does not need a driver and therefore
there is no specific OS service already running, which could take over
these measurements. In some cases it is even not feasible or not desirable
that the driver itself adds facts about its device. An example of this special
case is the CPU driver and its device, the CPU (see also section 2.2). In the
Multikernel architecture, OS functionality is moved from the CPU driver
to user-space. The CPU driver should not need to connect to the SKB and
start adding facts about the CPU. To solve this problem, the SKB provides
datagathering modules to query hardware information of common interest
and to perform measurements. The datagathering modules run as separate
applications and have to be started externally. The SKB does not start the
datagathering application by itself. The concrete implementation of the
datagathering application is described in section 3.5.3.

3.4.7 Algorithms
Algorithms transform information into knowledge by means of logical or
mathematical rules, as explained in section 2.1. They match a number of
facts, combine or transform them or parts of them and provide an answer
to the client. There are basically three different types of algorithms and
three different ways of loading them into the SKB.

While every client has full freedom of creating its own queries and
algorithms, there are common queries which are used by different clients
in different scenarios. It is not necessary to re-implement those in every
client. It is advantageous, to collect these queries in a single place and
load them once.

Some queries however are application-specific and only serve one ap-
plication. In those cases, it is best if the application provides its queries
and if it is responsible for loading them into the SKB.

Finally, some queries might be of common interest, but depend on
information provided by a certain external application. In this case, it
makes most sense, if the external application provides the information first
and loads the high-level queries later on. Other applications can execute
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those queries, without needing to know where the information came from
and how the queries have been implemented.

Common queries

The generic ability of querying hardware information provides a great flex-
ibility. Every fact can be considered in the query and facts can be matched
to each other. However the complexity grows with the number of facts
which have to be joined to derive an answer to a typically high-level ques-
tion. A better strategy is to define goals3 for commonly used queries.
These goals answer high-level questions by always matching the neces-
sary set of facts. This way, the complexity is removed from the client. The
maintainability is much higher, because only one goal needs to be adjusted
in case the fact formats change. Additionally, these goals are reusable for
many clients and scenarios.

Therefore, the SKB loads standard common queries. Typical common
queries are about basic hardware properties. The OS and applications need
to know how many cores are installed and how much memory is available.
Furthermore, the OS and applications often want NUMA-aware memory
allocation and query the SKB for NUMA regions and core to NUMA affin-
ity. Similarly, applications which care about cache optimizations query the
SKB for cache information. These queries do not need to be replicated in
every application. Instead, they belong to the basic set of queries which
get directly loaded by the SKB.

The ACPI driver is an example that adds platform facts for general use
to the SKB. Other clients can make use of them. The common queries
loaded by the SKB access some of the facts added by the ACPI driver.

Application-specific queries

Every application has the freedom to add its own facts and to execute
its own policy code. The policy code can access its own facts and com-
bine them with system facts already contained in the SKB. Since there is

3In ECLiPSe, goals are like functions. These are basically rules defining how to combine
facts.
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no access control in the SKB (see also section 3.4.8), every application-
specific fact uploaded by the application can also be accessed by every
other client. Section 8.7 gives an example of an application which makes
use of application-specific facts and algorithms.

External queries of common interest

The typical case is that clients are responsible for parts of the informa-
tion in the SKB. In the common case, they also load the corresponding
goals, rules and algorithms into the SKB. The client, which adds the data,
knows best how to interpret it and what types of high-level questions can
be asked. It knows exactly, how to get knowledge out of the gathered infor-
mation. Also, if the facts need to be extended, it is one step to also extend
the queries and algorithms based on them, without necessarily needing to
change the high-level query.

The PCIe driver is one example which provides detailed facts about
all devices and loads a set of functions to process the facts. It does not
only run the allocation algorithm based on its own facts, but it also en-
ables other clients to learn about PCIe devices. To facilitate processing
PCIe information, the PCIe driver loads a second set of generic queries.
The device manager is one example which needs to have at least a high-
level understanding of which devices are installed. Specific device drivers
can query high-level PCIe information related to the device. It is even ex-
tremely simple to implement a lspci-like tool to display all PCIe devices
installed in the system in a nice way.

3.4.8 A note on security

The current version of the SKB does not have any security mechanisms
for different reasons.

First, Barrelfish does not have a security framework. There is no notion
of users or superusers and there is no possibility to identify processes4

as trusted or not trusted. Consequently, there is no authentication and no

4A process is called domain in Barrelfish.
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authorization possible and the SKB accepts queries, updates and algorithm
calls from every process.

Second, the SKB does not check the submitted queries, updates and
algorithm calls for embedded update and deletion statements. This means
that code can be injected which alters or deletes all facts in the SKB.

These two security issues have an impact in a number of ways. Apart
from the problem that every process can alter or delete everyone else’s
facts, arbitrary long running algorithms can be executed within the SKB.
Since the SKB is single-threaded, this prevents any other processes from
using it. This could be solved by creating a new instance of the SKB,
whenever an algorithm has to be executed. The main instance serves as
a master and keeps the most up-to-date data and loaded algorithm code,
but does not execute algorithms itself. It would however complicate the
implementation, especially the data management. If algorithms execute
on different instances, data consistency has to be ensured like in a database
management system (see also section 3.8.2).

This thesis is about the feasibility and usability of a service like the
SKB. Security issues are not addressed in this thesis.

3.5 Implementation

This section presents the concrete implementation of the SKB server and,
most importantly, the concrete CLP system used, as this has implications
on the syntax of facts and queries accepted by the SKB. As mentioned
in section 3.4.4, the interface does not restrict what facts, queries or al-
gorithms are sent to the SKB, but the concrete CLP system embedded in
the SKB does. Therefore, this section presents a summary of the accepted
syntax for facts. It then moves to the implementation of the datagatherer,
which queries information of interest to most of the clients. Finally, it
describes, how common queries get loaded and how the implementation
handles the early startup of the SKB, which has to be available for hard-
ware configuration tasks.
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3.5.1 Implementation of the SKB server

The core of the SKB is implemented partly in C and partly in ECLiPSe [10,
30]. The SKB program itself is implemented in C. The SKB program starts
up and initializes itself as an OS service. It creates a message channel, and
starts listening for incoming commands (see also section 2.2.4).

The SKB program embeds the ECLiPSe engine, which itself is imple-
mented in C. The ECLiPSe engine is a managed language runtime for the
high-level ECLiPSe CLP language. It is responsible for executing all the
CLP code. It also takes care of storing, searching modifying and deleting
facts, as instructed by the executed CLP code. The ECLiPSe runtime does
therefore not perform operations by itself. It only performs operations
on behalf of the executed CLP code. The ECLiPSe engine comes with a
source code compiler, and a byte code to machine code compiler with op-
timizer. Source code gets compiled down at least to byte code at runtime.
The language runtime might decide to compile parts of the code – either
source code or byte code – to machine code at runtime. The actual func-
tionality of the language runtime is implemented in ECLiPSe CLP code as
well. When the main function of the SKB invokes the initialization func-
tion of the ECLiPSe engine, the ECLiPSe engine loads core functionality
from a compiled ECLiPSe CLP file. This CLP code instructs the ECLiPSe

engine to load more compiled files, as the functionality is all implemented
in CLP and not in C.

The main SKB program interacts with the ECLiPSe engine by means
of function calls. Every function call invokes the ECLiPSe runtime which
executes some CLP functions. After reaching a defined state, the CLP
code returns, causing the invoked C function to return back to the invoking
SKB function.

The main server functionality is implemented in a loop. Whenever the
SKB receives a request through the exported interface, it reads the input,
invokes the ECLiPSe engine and sends the computed output back to the
client.
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3.5.2 Facts and schema
Because the SKB is based on ECLiPSe and the interface directly passes
strings to the CLP engine, facts and queries are given in ECLiPSe syntax.
Facts are basically named tuples. The syntax is given below in a EBNF-
like format.

lower ::= "a" - "z".

upper ::= "A" - "Z".

digit ::= "0" - "9".

number ::= digit {digit}.

fact ::= predname"." | predname "(" args ").".

predname ::= lower {lower | upper | digit | "_"}.

args ::= arg {"," arg}

arg ::= atom | variable.

atom ::= atomname | number | fact | list.

atomname ::= lower {lower | upper | digit | "_"}.

variable ::= "_" | upper {lower | upper | digit | "_"}.

list ::= "[]" | "[" fact {"," fact} "]".

Facts are not only identified by their names. The arity (the number of
arguments) further defines the facts. This means that facts with the same
name, but different arities can co-exist. A query needs to provide the name
of the fact it wishes to match and an arity. It will only match those facts
with the same arities, even if more facts with the same name, but different
arities, exist.

Building a knowledge base out of flexible ECLiPSe facts results in an
extremely flexible data schema. The data has an implicit schema given
by the names, arities and argument values of the facts. There is no prior
schema or type definition available. Numbers and lowercase strings are
treated as constants without type. Furthermore, every application adds
its own facts with its own format schema during runtime. The schema is
therefore changing or rather extended constantly. Because ECLiPSe uses
unification to search for specific facts, it allows queries to try to match
everything with everything. If it is not the same (for example, a number
and a string), it is not unifiable and it will fail.

To query the SKB, the names and formats of the facts of interest have
to be known. It is therefore necessary to follow conventions about fact
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names, arities and attributes and their meanings. The declarative nature
of the facts facilitate understanding their meaning by simply looking at
them. The ECLiPSe command listing outputs the complete, dynami-
cally added data5. Some well-known facts are listed below.

apic(ACPI_ProcessorID, APICID, Availability). % 1 = Yes, 0 = no

bridge(pcie|pci, addr(Bus, Dev, Fun), VendorID, DeviceID,

Class, SubClass, ProgIf, secondary(Sec)).

device(pcie|pci, addr(Bus, Dev, Fun), VendorID, DeviceID,

Class, SubClass, ProgIf, IntPin).

interrupt_override(Bus, SourceIRQ, GlobalIRQ, IntiFlags).

rootbridge_address_window(addr(Bus, Dev, Fun), mem(Min, Max)).

bar(addr(Bus, Dev, Fun), BARNr, Base, Size, mem|io,

(non)prefetchable, Bits (64|32)).

fixed_memory(Base, Limit).

apic_nmi(ACPI_ProcessorID, IntiFlags, Lint).

memory_region(Base, SzBits, SzBytes, RegionType, Data).

currentbar(addr(Bus, Dev, Fun), BARNr, Base, Limit, Size).

pir(Source, Interrupt).

ioapic(APICID, Base, Global_IRQ_Base).

prt(addr(Bus, Dev, _), Pin, Source).

rootbridge(addr(Bus, Dev, Fun), childbus(MinBus, MaxBus),

mem(Base, Limit)).

mem_region_type(Nr, Type).

memory_affinity(Base, Length, ProximityDomain).

cpu_affinity(APICID, LocalSAPIcEID, ProximityDomain).

tlb(APICID, level, data|instruction, AssociativityCode,

NrEntries, PageSize).

cache(name, APICID, level, data|instruction, size,

AssociativityCode, LineSize, LinesPerTag).

associativity_encoding(vendor, level, AssociativityCode,

Associativity).

cpu_thread(APICID, Package_ID, Core_ID, Thread_ID).

maxstdcpuid(CoreID, MaxNrStdFunctions).

vendor(CoreID,Vendor (amd|intel)).

message_rtt(StartCore, DestCore, Avg, Var, Min, Max).

nr_running_cores(Nr).

5It does not return the statically defined facts in an algorithm file.
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3.5.3 Datagatherer

As mentioned in the design section of the SKB (section 3.4.6), some hard-
ware pieces do not have a specific driver, which could add hardware facts
to the SKB. In some cases there are drivers, but it is not desired that the
driver adds facts to the SKB. Therefore, the SKB provides modules, which
add facts for parts of the hardware which are of common interest.

The current implementation consists of several separate functions linked
to one program: the datagatherer. The datagatherer needs to be started sep-
arately from the SKB. Once the first instance of the datagatherer runs, it
spawns itself on every available core6. So far, there is only a datagatherer
for x86-based platforms implemented7.

First, each datagatherer instance queries CPU core information by call-
ing the cpuid instruction several times according to the specification[5,
65]. It interprets this data based on the specification and adds facts about
CPU features as well as the cache hierarchy to the SKB. The complete
cache hierarchy, including sharing of caches between cores, can later be
derived by SKB queries. Every cache has its own identifier. The identifiers
allow deriving knowledge about sharing between the cores. Since every
core runs its own datagatherer, the combined information is only available
after they all terminated. As a consequence, the information about which
cores share the same cache is only available after the datagatherers on the
sharing cores have finished adding the cache identifiers. All information is
added on a per core basis. This is important to support core heterogeneity,
as other core types might have different cache characteristics.

Each datagatherer also measures the latencies to all levels of caches
and to all available NUMA-nodes. It adds this information to the SKB.
This provides a logical, measured view of the complete memory system.
To ensure clean measurements, the instances measure the latencies one af-
ter the other. Measuring latencies concurrently from all CPU cores would
result in high interconnect usage and finally in wrong numbers. The syn-
chronization is done using Octopus, which I explain in chapter 4.3.

6The available cores are read from ACPI tables
7Datagatherers are platform-dependent, because they need to know how to get access to

information at the register level.
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After that, each instance queries supported features on each core. This
includes, for example, power management capabilities and various other
features. The features are added to the SKB per core.

3.5.4 Common queries
The SKB implements common queries in the file queries.pl. These
queries are mostly related to platform information. Clients can learn about
installed cores, NUMA regions and affinities. Also, Barrelfish uses an
internal continuous core numbering. This numbering might differ from
the actual hardware identifiers of CPU cores. The mapping is stored to
the SKB. Clients can use these facts to translate core numbers to hardware
core identifiers and vice versa.

The SKB always loads this file when it initializes itself. Because it is a
regular CLP file, it might instruct the ECLiPSe engine to load further files.
If, in future, more files of common interest should be loaded during ini-
tialization time, the additional file names can be added to the queries.pl
file. It is not necessary to change the source code of the SKB.

3.5.5 Startup
The SKB starts early in the boot process of Barrelfish. A RAM disk con-
tains all necessary rules and fact files as well as the compiled core func-
tionality of the ECLiPSe engine such that the SKB can run even before
hardware like a disk is configured. This enables the SKB to be used for
basic hardware configuration like PCIe as well8. The SKB is completely
self-contained and compiled as a statically linked application. The only
dependency is on the memory server. However given that every other
part of the OS needs memory, the memory server gets started early in the
startup procedure of the system as well. A soon as it starts executing,
it initializes itself, loads core functionality from the RAM disk and then
loads standard query files from the RAM disk. It exports itself as a service
and the rest of the system can start using it. Barrelfish treats the SKB as

8This is a requirement to access a disk afterwards.
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a special service, like few other services such as the memory server. Be-
cause regular services export their references by means of the SKB, it is
unfeasible for the SKB to export itself by means of itself. The connection
endpoint of the SKB is therefore treated specially and belongs to the few
well-known ones.

3.6 Client library
The section describes the client library, because this is the common way of
interacting with the SKB. Small code fragments illustrate the most com-
mon ways of using the library.

On top of the basic interface described in section 3.4.4, the client li-
brary provides higher-level APIs to interact with the SKB. This library
takes care of connecting to the SKB, sending requests using the basic in-
terface to the SKB and receiving results. Additionally, the library includes
functionality to create query strings in a similar way printf() creates
strings from text and variables. Likewise, the library includes functional-
ity to parse the result strings in a scanf()-like way. Parts of the result
strings can therefore be copied or converted to variables in an easy way.
Because many queries produce lists as a result, the library implements a
simple form of a cursor to walk through lists and to extract all elements to
C variables.

Typically, clients link to this library and use its functionality, rather
than using the basic interface directly.

3.6.1 Using and initializing the library
The applications only need to link to libskb.a and include<skb/skb.h>.
First of all, the library has to be initialized and a connection to the SKB
has to be set up. A single function call takes care of both:
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errval_t err = skb_client_connect();

if (err_is_fail(err)) {

DEBUG_ERR(err, "connection to SKB failed");

... some useful error handling ...

}

This call sets up internal data structures like buffers for queries and
results. It then creates a connection to the SKB and prepares everything
for receiving results. The function indicates errors in its return value. If
successful, the rest of the functions defined in the header file can be used
to interact with the SKB.

3.6.2 Interacting with the SKB
Four main functions are used to interact with the SKB:

• int skb add fact(char *fmt, ...);

• int skb execute query(char *fmt, ...);

• errval t skb read output(char *fmt, ...);

• bool skb read list(struct list parser status *status,

char *fmt, ...);

The following subsections explain these functions in more detail.

Adding facts

Facts can conveniently be added using the function skb add fact(). This
function works in a printf() manner. The first argument is a format
string. After that, an arbitrary number of parameters can be passed such
that they match the format identifiers in the format string. The function
then produces a complete string and sends it as a message on the basic
interface to the SKB.

The code fragment below shows how to add a simple fact. Only the
fact name has to be provided, because it does not have any fields. Note
that all facts have to be terminated with a dot.
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errval_t err;

err = skb_add_fact("simple_fact.");

if (err_is_fail(err)) {

DEBUG_ERR(err, "adding fact to the SKB failed");

... some useful error handling ...

}

The next code fragment shows how to add an n-ary fact. Fields can
either be “hard-coded” or passed as parameters. In this case here the con-
stant number “17” and the constant string “pcie” are hard-coded while the
other parameters are passed as variables and matched in the format string.

int id = 5;

char description[] = "device";

int value = 0xfa;

err = skb_add_fact("nary_fact(%d, %s, 17, pcie, %d).",

id, description, value);

if (err_is_fail(err)) {

DEBUG_ERR(err, "adding fact to the SKB failed");

... some useful error handling ...

}

Executing queries

Queries are executed in a similar way. The query string is prepared in a
printf()-way. Queries match facts to variables. The variables of interest
should be included in the output. The query has to explicitly construct the
output by writing variables to the memory-based output stream. Not only
variables, but additional text to structure the output and facilitate parsing
can be written to the output stream. The following code fragment queries
the nary fact which was added above. The ID which is of interest is
defined by the variable id. The description is not important for this query,
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this means that it does not define it by not passing a value it should match
and it does not read it by not passing a variable at that position. Instead it
uses the underscore character which stands for an anonymous variable in
Prolog[24]. Therefore, every value will unify with the anonymous variable
which basically is the same as ignoring it. Leaving it away is not an option,
because the arity has to match the arity of the stored fact. In this case here,
the fact has an arity of five. The query makes sure that only facts with the
constant number “17” will be unified. The fields of interest are the type
and value. Therefore, the query provides two variables to be unified with
the stored fact. These variables are part of the result. The query writes
them to the output stream. To make parsing easier, it encapsulates the
values in a res() tuple.

errval_t err;

int id = 5;

err = skb_execute_query("nary_fact(%d, _, 17, T, V),

write(res(T, V)).",

id);

Executing algorithms

At a high-level, algorithm execution is the same as query execution. Pa-
rameters with concrete values can be passed and variables to be matched
are passed the same way as in query execution. The difference is, that the
“query” string does not directly match stored facts, but instead a rule (or
function). An algorithm can be seen as a CLP program consisting of sev-
eral rules which transform stored facts or output of underlying rules into
knowledge within a given context.
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Rules have to be created first. Either they are uploaded directly through
the interface or they are loaded from a file. Assume that the file rules.pl
contains the following rule:

binary_fact(ID, V2) :-

nary_fact(ID, _, 17, _, V),

V2 is V * 2.

The nary fact is matched first and the value is doubled before re-
turning it. The code fragment below shows how to load the file.

errval_t err;

int id = 5;

err = skb_execute_query("[rules].");

The next code fragment shows how to execute the algorithm. It is
perfectly fine that the execution passes a variable named Val instead of
V2, because Val will be unified to the value of V2. How to implement pro-
grams can be learned from the Prolog book[24] and the ECLiPSe book[10].

errval_t err;

int id = 5;

err = skb_execute_query("binary_fact(%d, Val),

write(res(Val)).",

id);



76 CHAPTER 3. THE SYSTEM KNOWLEDGE BASE

Reading the output

The client library provides the function skb read output() to interpret
the output string. Matching a number is similar to matching a number in
scanf(). The %d conversion matches a decimal number. Matching text
has to be done using %[a-z], because the %s conversion would eat the rest
of the string.

The res(Type, Value) output is a res element with a string value
and an integer value. It can be read like in the code fragment shown below.
The program passes res(%[a-z], %d) as a pattern to the
skb read output() function together with the two variables used to store
the result in a scanf()-like format.

errval_t err;

char text[80];

int val;

err = skb_read_output("res(%[a-z], %d).", text, &val);

Reading an output list

In some cases an algorithm produces a list of output elements. As an
example, the algorithm could collect the type and value fields of all
nary facts stored in the SKB and return them in a single list of the form
[output(string1, integer1),

output(string2, integer2), ...]. In this case, the caller should
iterate over the result list and convert all values to the corresponding C
values.

The program prepares the pattern to be matched. Here it reads output
elements with a string and an integer value, each. The skb read list()
function parses the current element and stores the values in the passed
variables. A status element remembers which element was processed
last by this function. The status has to be initialized before being used
in the while loop, by calling the function skb read list init(). The
code fragment below queries the SKB, initializes the status structure and
iterates over the output list.
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errval_t err;

char text[80];

int val;

struct list_parser_status status;

... execute query ...

skb_read_list_init(&status);

while(skb_read_list(&status, "output(%[a-z], %d)",

textoutput, &number,) {

... do something with the values ...

}

3.7 Evaluation
This section evaluates the SKB in terms of code complexity and resource
consumption characteristics. Because the SKB provides a service to its
clients, but does not perform operations by itself, it cannot be evaluated
in terms of performance. The performance evaluation depends heavily on
how the SKB is being used by the client. The use-case chapters evaluate
the algorithms in terms of performance.

3.7.1 Code complexity
One of the most important goals of this thesis is building an infrastructure
which not only enables clients to take informed decisions, but also to take
them with a small code complexity. This means that expressive algorithms
should be implementable with few lines of code and they should be as
readable and maintainable as possible. It should be clearly stated that the
property of reduced code complexity applies mostly to the use-cases. It
does however not necessarily mean, that the infrastructure provided by the
SKB can be implemented with only a few lines of code. It is ok, if the
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Functionality LOCs C LOCs ASM LOCs CLP
ECLiPSe 97161 110 51469
SKB server 510 0 0
ClientLIB 300 0 0
Total 97971 110 51469

Table 3.1: LOCs

complexity is pushed towards the central SKB, if it helps to reduce the
code complexity for most of the clients. Table 3.1 summarizes the number
of lines of code needed to implement the SKB.

As the table shows, the total number of lines of code is relatively
large9. This is not problematic for several reasons. First, as the table
shows, the largest part is the ECLiPSe code. It accounts for 97161 lines of
C code, some lines of assembly code and 51469 of CLP code providing
the core functionality of ECLiPSe. Fortunately, programmers of clients
(OS services and applications) do not need to maintain the ECLiPSe code.
Second, the part of the SKB code which has to be maintained (initializa-
tion, exporting as a service) is only 510 lines of C code. This is relatively
small and easily understandable.

3.7.2 Memory overhead
This section summarizes the memory overhead caused by the SKB. Be-
cause the SKB is used by various clients, the overhead does not account
completely for each of them. In contrast to execution time, it can be amor-
tized over several hardware and system configuration use cases.

Table 3.2 shows the breakdown and the total memory overhead of the
SKB. The statically linked SKB program of 1.5MB includes the complete
necessary code with library functions, which normally would be avail-
able as shared libraries. It also includes the complete language runtime
with compiler and optimizer. The 600kB for the RAM disk not only con-

9LOC counts were generated using “SLOCCount” by David A. Wheeler.
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Size
Solver executable (statically linked) 1.5MB
RAM disk 600kB
Dynamically allocated RAM 60MB
Total 62.1MB

Table 3.2: Memory overhead

tains user CLP programs (such as the algorithms), but also the complete
CLP core logic and basic ECLiPSe CLP goals, which are all implemented
in CLP as well and stored as precompiled CLP files. Finally, CLP re-
quires a sufficiently large preallocated heap, used to store facts as well as
to compile, store and run CLP code. Additionally, CLP code creates many
temporary variables and lists during execution on the heap. Finally, the
backtracking stack needs to be large enough to allow creating the neces-
sary choice points when searching the solution tree. The 60MB dynam-
ically allocated RAM is used both for the temporary working heap and
all hardware-related facts used by Barrelfish. This includes PCI data, and
a description of available cores, memory hierarchy, performance profiles,
etc..

3.7.3 Performance

Performance in terms of CLP code has different meanings. First, the time
to execute a specific CLP algorithm can be measured. This time needs to
be related to the actual compute complexity of the algorithm, which is not
always obvious. The declarative nature of CLP allows a concise descrip-
tion of a problem, even if it has the same complexity as, for example, the
bin-packing problem. Second, performance might be measured in terms of
how good the result of an algorithm is. In this case, it depends on what the
actual goal of the algorithm is and how well it can reach it or how close the
result will be to the optimum. Finally, performance might be measured in
terms of performance increase of a specific mechanism, if it is configured
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with the “right” policy parameters produced by CLP code.
All three cases heavily depend on the actual algorithm executed, its

goals and the mechanisms, which use the derived parameters. It is there-
fore not feasible to provide performance evaluations in this chapter. In-
stead, every use-case provides a separate performance evaluation in terms
of algorithm execution time and “goodness” of the derived parameters ac-
cording to the goals it should reach.

3.8 Discussion
This thesis evaluates the declarative language approach to express complex
decision and hardware configuration problems. It also evaluates how well
a new operating system on increasingly diverse and complex hardware can
reason about hardware and adapt to it at runtime without prior hardware
knowledge. My hypothesis is that the SKB as a reasoning engine, which
runs high-level declarative algorithms, forms a good foundation to reason
about the complexity of modern hardware, while reducing code complex-
ity of the algorithms.

As the use-cases shall show, the approach is positive and turns out to
be useful, but not without challenges. This section describes the common
advantages and disadvantages of this approach.

3.8.1 Advantages
Clear policy/mechanism separation Maintaining a sharp distinction be-
tween, on the one hand, the algorithm code used to derive suitable policy
parameters and, on the other, the mechanism applying the policy parame-
ters has a number of strong benefits.

First, the algorithm can be clearly understood in isolation from the
mechanism code, making it easier to both debug and maintain. Indeed,
I developed, tested and debugged every algorithm “offline” in a vanilla
ECLiPSe running on Linux using facts from a variety of machines copied
out from ECLiPSe’s listing command on a running SKB instance. Only
after this phase, I put the algorithms into service in Barrelfish’s SKB. It is
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also useful to be able to test this code by writing correctness conditions in
ECLiPSe which are then validated automatically.

Second, the mechanism code is simplified, since it is no longer threaded
through the algorithm code. Verifying that the mechanism code, written
in C, is correct, becomes a simpler task, and the chances of breaking this
code when changing the algorithm code itself reduces to almost zero.

Separation of special cases Special cases can be handled entirely in the
declarative language, without polluting the mechanism code, written in C.
The mechanism code only applies the final result, no matter how many
special cases are modeled in the declarative algorithm code.

Moreover, special cases often are additional constraints which can be
added besides the mainline algorithm code, without actually changing the
mainline algorithm code. For the most part, additional constraints are one-
line references to existing functions, and hence easy to add to the system.

All of this results in a clear separation within the declarative code be-
tween special cases and the solution description.

Flexibility of data structures Hardware information in traditional op-
erating systems is typically represented by a set of simple, ad-hoc data
structures (tables, trees, hash tables) whose design is determined largely
(and rightly so) by performance concerns in the kernel. Using the SKB,
detailed hardware information is represented in form of facts. The only ex-
ception is the system’s fast path, which needs fast and specific data struc-
tures providing the minimal necessary information as quickly as possible.

High-level facts greatly facilitate reasoning about the information in
ways not foreseen at design time. Facts added by independent programs,
and originally thought to be used for specific use-cases, can be unified
later on by third processes to gain further knowledge. For example, ACPI
information about physical address region types can be transformed eas-
ily into regions not suitable for device mappings. The logical unification
mechanism provided in languages like ECLiPSe makes this expressible in
a single rule. Furthermore, this representation can be changed over time
without concern for disturbing critical kernel code.
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Late-binding of algorithm ECLiPSe allows adding new functionality
as well as replacing functionality at runtime. This feature provides con-
siderable flexibility. At any time, parts of an algorithm can be exchanged
as needed without needing to change the mechanisms applying the algo-
rithm’s result. Even if the algorithm was executed already, it is possible
to replace single parts of it. The next invocation will execute the new
functionality.

Platform independence In many cases the policy code remains the same
over different architectures. Because ECLiPSe is a managed language run-
time which executes a high-level description of a problem formulation and
because facts are given in a uniform way, it can run unmodified on differ-
ent architectures. Only the architecture-specific mechanism code needs to
change. This makes algorithms highly portable. Furthermore, only short
mechanism code has to be ported, reducing the chance of introducing bugs
when porting.

Reuse of functionality While CLP may be regarded as a somewhat
heavyweight approach, the functionality provided is close to that required
by many parts of a functional OS – in some ways, the system knowledge
base might be regarded as analogous to parts of the Windows Registry[122]
or the Linux sysfs file system[94], albeit with a much more powerful
type system, data model, and query language. Barrelfish uses this func-
tionality to represent various types of hardware knowledge and internal
software state. Along with the authors of Infokernel[11], the thesis argues
for making a rich representation of system information available for online
reasoning and CLP provides a powerful tool for achieving this.

Complete description with constraints The complete solution to a prob-
lem can be described solely on variables and constraints on single vari-
ables and between different variables. Variables can be related to each
other even before concrete values have been assigned. By implementing
algorithms in this abstract form, the programmer leaves complete freedom
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to the solver, which assigns values to variables. Therefore, no solution will
be missed just because of suboptimal values assigned by a programmer.

Reduced code complexity and maintainability The use-cases show,
that complex algorithms and policy code can be implemented with few
lines of code. The complexity is reduced significantly. The code is not
only better maintainable, because of the reduced complexity, but also be-
cause of the better structure. As already described, there is, for example, a
clear structure between the mainline algorithm and special cases.

3.8.2 Disadvantages

Unsurprisingly, the approach also has some significant drawbacks.

Constraint satisfaction is no silver bullet Many allocation problems
can be translated to simple rules and, consequently, can be expressed in
a natural way. Special cases can be modeled as additional constraints to
the base formulation of the allocation problem, keeping everything, with
special cases, in a declarative description. However, this does not automat-
ically lead to a solution in a reasonable amount of time. Constraint solvers
have a well-known tendency to explode in complexity (and, consequently,
time of execution) without careful specification of the problem, and the
use-cases in this thesis are no exception in this regard.

Part of this is due to ECLiPSe being a relatively simple solver by mod-
ern standards, but much of the complexity is inherent. In practice, the onus
is on the programmer to guide the solver by careful annotation of the prob-
lem. In some cases, it is advantageous, if the programmer knows how the
solver instantiates the rules and variables and what strategy it uses to probe
values. Rules, which are “solver-friendly” reduce the runtime involved in
searching valid values meeting all the constraints. This makes the source
code more complex than a simple specification of the constraints – the
ECLiPSe code in this thesis is carefully written to avoid an explosion in
complexity and runtime.
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For example, in the concrete case of ECLiPSe, the programmer first
creates variables, applies constraints and finally passes all variables to be
probed to the solver in form of a list. Even if the declarative description
of a problem has no order or control flow, the solver is still deterministic.
The solver probes the variable list starting at its end. If the programmer
knows that a re-probing of one variable would cause an almost complete
permutation of the search space, this variable should be probed first (or
at least as early as possible). Re-probing other variables might be fine,
because they do not largely influence values of all remaining variables.
In this case, the programmer can greatly reduce execution time by first
sorting variables in a way that the “hard” variables are at the end of the
list and get probed first. And still, the problem is described in its full
generality and in a completely declarative way. Sorting variables, before
passing them to the solver, does not influence the problem description.

Increased resource usage Even with the heuristics described above,
ECLiPSe, compared to C, is an interpreted, high-level language with high
execution time overhead. Additionally, a CLP algorithm works by prop-
agating constraints and then probing values rather than assigning values
in a straight-forward iterative way. Clearly this leads to longer execution
times.

While the ECLiPSe CLP solver used for this thesis was easy to port
and embed in an OS, it is relatively slow by modern standards. An al-
ternative would be a more modern Satisfiability Modulo Theories (SMT)
solver like Z3[34]. Z3 could express most of the constraint constructs
used in the use-cases. The logical unification would need to be expressed
differently. However, most probably it would significantly improve the
execution time. SICStus Prolog[120] and SWI-Prolog[130] allow CLP
programming through the CLPFD library[27]. GNU Prolog[36] allows
CLP programming and even comes with a compiler to produce standalone
executables.

Nevertheless, for some classes of problem the execution time overhead
is not critical as long as it remains reasonably small relative to the use-
case’s complexity. Given that it runs off-fast path, an execution time of
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less than a second should be acceptable.
Apart from being a programming language, CLP can also be used as

an algorithm design tool: it aids in considering requirements, constraints
and rules. Once implemented, CLP code can be compiled to C code and
finally to a standalone executable – although ECLiPSe cannot currently
output its internally-generated machine code in the form of an indepen-
dent executable, other systems such as GNU Prolog[36] do produce stan-
dalone executables of constraint logic programs. This combination of CLP
as a design tool and the compilation of the code down to an executable
preserves many of the benefits, such as maintainability and clean design,
while offering reasonable performance.

In the extreme case, CLP solutions can be applied completely stati-
cally. For example, resource constrained devices, such as small battery
powered sensor nodes or embedded systems, usually have a fixed hard-
ware configuration and often even a fixed set of tasks to run. The algo-
rithm can run offline, on a standard PC with facts gathered on the device.
The outcome of the algorithm can be embedded in the device’s boot image
and applied as if it was run on the device itself. With the approach in this
thesis, it is particularly easy to run the algorithm on a standard PC. The
algorithm and the facts are written in a platform-independent way and can
be executed on every ECLiPSe instance, independently on the underlying
device.

Large code base While the SKB enables clients to implement their al-
gorithms with considerably less code (C and ECLiPSe), it does employ a
large body of code in the form of the CLP solver. The port of ECLiPSe

in Barrelfish consists of 97161 lines of C10, plus a handful of assembly-
language lines. In addition, the core CLP libraries add 51469 lines of
CLP, many of them quite long. The complete solver executable (statically
linked) consists of 1.5MB for a 64-bit x86 OS. Additionally, a compressed
RAM disk of 600kB provides the necessary ECLiPSe files. This is clearly
significant, and adding this amount of code to the boot image of an OS
raises at least two concerns.

10LOC counts were generated using “SLOCCount” by David A. Wheeler.
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First, there is the issue of code bloat. On modern hardware, the boot
process is not unduly impacted by the overhead. Still, loading the SKB and
running hardware configuration algorithms in CLP at boot up increases the
boot up time. On the other hand, as mentioned above, the CLP solver does
provide a valuable data management service to many parts of the OS as a
general name server and policy engine, and so the cost in code size should
be amortized over the whole set of client subsystems which use it.

Second, there is the extent to which the CLP solver itself can be trusted.
The OS and all the SKB clients rely on ECLiPSe behaving correctly. Since
it is a mature, general-purpose system which is actively maintained, the
expectation that it is reliable and relatively bug-free should mostly hold.
However, it is unlikely that a complex piece of code like ECLiPSe will
be formally verified, which makes this approach less attractive for high-
assurance operating systems. However, such systems typically are written
to specific hardware platforms, obviating the need for complex configura-
tion logic.

For high-assurance, formally verified systems, a better application of
this approach would be to apply the ideas at compile time, which would
integrate with the seL4 approach[72] of modeling the entire OS in a high-
level language, which is then translated (in a way that preserves the veri-
fied properties) to C.

Finally, it is often worthwhile to model complex algorithms in CLP for
which an imperative solution would otherwise be too complex to imple-
ment. It is however often simple to check the correctness of the algorithm’s
output in an imperative way. The correctness checking code can easily be
implemented in C and fully verified. This property would allow runtime
validation of the results of the CLP search, without the need to rely on
ECLiPSe behaving correctly for all possible inputs.

Boot sequence Configuring hardware at OS boot time in a high-level
language like CLP means that the language runtime has to be started early
in the boot process. Barrelfish may be unique in loading a full CLP system
before configuring hardware.

Perhaps surprisingly, this imposes very few requirements on the OS.
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The SKB, like most of the components, executes in user space as in a
classical microkernel design. However, CLP requires very little of the OS
to be functional beyond basic (non-paged) virtual memory and a simple
file system, initially from a RAM disk image.

The dynamic nature of the solution allows loading further functionality
after an initial configuration when disks, networking interfaces, etc. come
online.

Learning curve Most OS programmers use C rather than ECLiPSe to
implement algorithms, and the learning curve for a language like ECLiPSe

is almost certainly steeper than for C. However, it is likely that someone
with a basic knowledge of ECLiPSe will find it easier to understand small
and simple high-level code than a complex, imperative C version.

Furthermore, the SKB is by no means the first system which employs
logic programming in an operating system – for example, Prolog has been
successfully used to provide network configuration logic in Windows[61].

Expressiveness is a risk Using a complete CLP language runtime with
no restrictions at all allows any problem to be expressed in form of a CLP
program. While this is a desired feature, it comes also at a risk. Long-
running algorithms block the SKB and make it unusable for other clients,
while the algorithm is still executing.

For a research system it is a nice feature, however, for a production
system, it would be necessary to either restrict algorithms or to bind the
execution time. Another approach would be to spawn a child SKB for
every execution of an algorithm. This would lead to a similar architecture
as many internet servers have. Every client is handled by a separate thread
or even a separate process. Algorithms would still have access to all facts,
but would not block other clients, even if their execution time would be
high.

Apart from a long execution time, there is a second risk which may
arise. Conflicting constraints prevent the solver from finding a valid solu-
tion in which case the output is simply “No.”. Algorithms need therefore
to be designed carefully in any case. Algorithms specifically designed to
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solve one problem can easily be implemented in a way that no conflicting
constraints are applied. However, more dynamic algorithms, where multi-
ple applications can add more requirements in form of constraints, are at
the risk of not finding a solution. In these cases, the mainline algorithm
needs to check in advance whether conflicts may arise. They need a fall-
back scenario or a way to restrict what additional constraints applications
can add.

3.8.3 Approaching a configuration problem in CLP

CLP can handle many complicated requirements on resource configura-
tion. However, its expressive power is also dangerous: one can easily
create unmaintainable and sub-optimal code in CLP if a problem is tack-
led in the wrong way. It is essential to follow some general rules when
approaching a problem formulation in CLP.

First, it is essential to define an appropriate data structure and to cre-
ate every configuration parameter variable (such as, for example, memory
addresses) only once, so that all necessary constraints can be applied to
the single variable standing for a parameter. For hardware configuration,
a data structure which mirrors the hardware topology is natural, and al-
lows dependencies between devices to be expressed in the data structure
between the items representing them. The data structure should contain
one variable for each parameter (such as memory address), which will be
be assigned a concrete value by the CLP system. Next, the data structure
is walked and constraints applied to the variables in such a way that no
temporary variables are created, and no constraints are mistakenly applied
to these temporary variables. Unfortunately, when using a mix between
CLP and Prolog (as in ECLiPSe), it is easy to create temporary variables
by mistake. Finally, the variables should be collected and passed to the
CLP solver to instantiate them with concrete values.
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3.9 Summary
With the SKB I built a central service which takes care of storing knowl-
edge in a high-level declarative way. Furthermore, its embedded declara-
tive language allows clients to run declarative algorithms based on these
high-level facts. The SKB servers as a policy engine for various configura-
tion and decision problems. Furthermore, the complexity of decision and
configuration tasks can be pushed to the SKB and significantly reduced
through the use of a high-level declarative language.

A simple client library facilitates the interaction with the SKB, without
restricting the expressiveness provided by the CLP language.

Several use-cases presented in the following chapters prove the useful-
ness of the SKB. The problems to be solved and how they are approached
using the SKB are described in the respective chapters. A discussion of ad-
vantages, disadvantages and possible challenges along with an evaluation
of the concrete algorithms is given on a per chapter basis.
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Chapter 4

Coordination

This chapter presents Octopus, the coordination service in Barrelfish. While
a distributed structure allows applying algorithms from the distributed
field, it also suffers from similar problems like synchronization, naming,
distributed locking and coordination of service instances. Services run-
ning on different cores do not necessarily know each other and still have
dependencies. The service dependencies need to be resolved externally
and services need to be coordinated.

This chapter presents the design and implementation of Octopus, which
is a native extension of the SKB. It provides easy-to-use, high-level, uni-
form coordination primitives and event mechanisms. It directly benefits
from the advantages provided by the language runtime of the SKB. Fur-
ther, the SKB already runs as a centrally available service. This forms a
nice ground to embed coordination and event functionality both of which
are available from the moment Barrelfish starts up. Although it is imple-
mented on top of the SKB, the careful implementation ensures reasonable
performance.

91
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4.1 Introduction
The distributed structure of Barrelfish reduces the complexity of single
software components. Each component is only responsible for a specific
task. On the other hand, the OS still provides functionality as a whole
to the complete software stack. This requires components to interact cor-
rectly, even if they do not know each other. An external coordination and
synchronization service enables them to coordinate. At the same time it
removes complexity involved in synchronization code from the compo-
nents.

To take an example, the basic hardware configuration must be done,
before drivers initialize single devices. Likewise, device drivers need to
initialize devices, before services, based on them, can be used by the rest
of the system. A network interface card (NIC) driver, for example, ex-
ecutes as a separate program. It must however wait for the PCIe driver
to configure the PCIe bus, before the NIC driver is allowed to access the
network card’s registers.

At boot time, services must be started in an order which respects their
dependencies and, preferably, minimizes startup latency. As devices (and
cores) come and go, drivers must be started up and shut down, while meet-
ing their dependencies. Effective power management requires knowledge
about device dependency: shutting down a USB controller or PCI device,
for example, should only be done if the dependent devices are safely shut
down as well. Moreover, the OS now has complex synchronization re-
quirements between components: hotplug events may involve careful co-
ordination between PCI managers, ACPI subsystems and device drivers.

In existing systems, resolving these dependencies and implementing
synchronization patterns between OS components and modules is typi-
cally hard-coded into the components themselves. In some cases, the syn-
chronization is implicitly ensured by the control flow of the program. A
Linux kernel, for example, initializes subsystems by calling the initial-
ization function from the main initialization function. There are however
cases, where synchronization between concurrently running components
is hard-coded in an ad-hoc way. This leads to high complexity in the OS
and therefore also to correctness and reliability issues.
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The main goals of Octopus are to provide a clean and high-level in-
terface such that dependencies can be expressed by components, which
do not necessarily know each other. Octopus should also serve as a ba-
sis to implement distributed synchronization primitives with a small code
complexity. Finally, as coordination of OS components is necessary from
the boot up of the system, it is a requirement that Octopus runs from the
beginning, without depending itself on other OS services.

Octopus is inspired by facilities such as Chubby[26] and Zookeeper[63].
It is based on the SKB for several reasons. First, it directly benefits from
the declarative language facilities and thus, the code complexity involved
in synchronization primitives can be reduced. Second, the SKB is a central
service running anyways. By putting Octopus functionality on top of the
SKB, it will always be available without increasing the OSs complexity by
means of additional services. Finally, the SKB is designed in a way that it
can boot up early. Therefore, Octopus is available early as well, which is
one of the important requirements to synchronize OS boot up.

Octopus has been mainly implemented by Gerd Zellweger. He de-
scribes the work in his Master’s Thesis report[143]. Additionally, the
design, concepts and the use-cases presented in this chapter have been
published in a recent paper[144].

4.2 Background
Octopus is a synchronization facility with events and a fast and simple
key-value store. Therefore, this section summarizes related work on both
topics.

Octopus builds on ideas from the distributed computing field. Tra-
ditionally, data centers have faced complex coordination problems at the
level of distributed systems on clusters. Chubby[26] and Zookeeper[63]
provide coordination and synchronization for large collections of machines.
They organize information in a hierarchical name space and export a file
system-like API. Zookeeper and Chubby are used as a multipurpose tools
for various coordination tasks such as configuration management, storage,
group membership, leader election, locking and mutual exclusion. Some-
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what unexpectedly, Chubby also increasingly replaced DNS as a general-
purpose name server internally at Google. Both systems use state-machine
replication to achieve high availability, using variants of Paxos[76] for
consensus among nodes.

With the increasing demand of fast access to data at massive scale,
key-value stores favor simplicity in terms of data model and query com-
plexity over strong guarantees such as the ACID properties provided by
centralized relational database systems. Distributed key-value stores im-
plement a form of distributed hash table[35, 47], providing eventual con-
sistency. Redis[111] is one example of a centralized RAM-based key-
value store with optional master-slave replication and persistence. It aims
to be lightweight and high-throughput, and stores schema-less data under
keys. Redis provides a flexible set of atomic operations on single data
items.

Publish-subscribe systems allow flexible interaction in distributed sys-
tems and feature three key ideas[41]. First, space decoupling means that
interacting parties do not need to know each other. Second, time decou-
pling means that interacting parties do not need to be actively participating
at the same time. Finally, synchronization decoupling means that publish-
ers never block on generating data and subscribers get asynchronous data
events.

In the OS context, D-Bus[46] is an interprocess communication facil-
ity for Linux and other operating systems which also supports a limited
form of coordination: processes can wait for events from specific objects,
and the D-Bus daemon can start processes when messages are sent to them.

4.3 Approach

This section explains the design of the Octopus service and shows in detail,
how data items are stored and forwarded. It is important to know that the
high-level language in Octopus serves to reduce complexity when building
distributed synchronization primitives.
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4.3.1 Design principles
Octopus borrows ideas from the interfaces provided by Chubby and
Zookeeper. The main goals are facilitating distributed coordination and
event handling, while reducing the code complexity involved in program-
ming such functionality. However, the OS environment is somewhat dif-
ferent from a large cluster. The requirements and resulting design princi-
ples are therefore different. The paragraphs below summarize the design
principles applied in the Octopus design.

Independent service The service must be self-contained. Octopus should
make the coordination of the OS boot-up possible. This is only feasible,
if it does not rely on many other OS services (such as the file system or
network). Octopus should help to model dependencies, but it should not
create new ones itself. Every functionality necessary should be included
in a single program image.

Centralized service The code complexity should be as low as possible.
To reduce the code complexity and to make the first goal possible without
needing anything special from the OS, Octopus should be a lightweight,
centralized coordination service rather than a replicated system. On a sin-
gle machine, an OS can still assume a reliable interconnect and no single
CPU failures, at least in the medium term. A centralized service should
therefore not cause availability issues.

Loosely coupling Information providers and consumers should be loosely
coupled. Services, which do not necessarily know each other, appear and
disappear during runtime of the system. A loose coupling can be achieved
by an asynchronous interface with a fast, flexible and scalable data and
query model.

Non-blocking interface The query interface should never block clients,
even if their queries cannot be answered at the query time. The interface
should be completely non-blocking. Instead of blocking, clients should be
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able to sign-up for future notifications, which Octopus sends, whenever
the query can be answered. Asynchronous events should notify clients
about any data store changes of their interest.

High-level interface The code complexity involved in using the coor-
dination service and implementing additional synchronization and coor-
dination primitives based on Octopus should be minimized. A high-level
interface achieves high expressibility at a low code complexity. This is
why Octopus should export a high-level interface to its clients.

4.3.2 Octopus

This section describes the overall architecture of Octopus. Based on the
design principles listed in the previous section, Octopus implements dis-
tributed, named synchronization primitives such as locks, barriers and
semaphores above a key-value store and associated event delivery sys-
tem. Octopus unifies synchronization, name service, and event handling
for the OS. Octopus exports a convenient API for the key-value store to
clients. Using the API, clients access the key-value store. They can add,
modify and delete data or search for data items. Also, the API allows en-
abling notifications for specific changes of the key-value store. Finally,
for the publish-subscribe system, clients can subscribe using the API and
publishers publish data by means of the API. It is therefore a complete,
but still simple and convenient API providing access to all functionality of
Octopus.

Octopus handles two types of data. On the one hand, it handles tran-
sient data in the publish-subscribe case. This data never gets stored, but
only forwarded in form of notifications or publish events to clients. On
the other hand, it handles persistent data. This data gets stored to the key-
value store and remains in RAM during the lifetime of the OS or until it is
deleted.

Octopus abstracts the key-value store behind high-level record entries,
and a query and update language enables clients to add, query and modify
records. Clients register for events at the record level. The two advantages
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Figure 4.1: Octopus: General Architecture

of a high-level language are reduced code complexity and independence
of the implementation. Section 4.3.3 describes records and the query lan-
guage in more detail.

Octopus is built as an native extension to the SKB as shown in Fig-
ure 4.1. Server functionality is in a library liboctopus_server linked with
the SKB. Clients link to liboctopus which exports the Octopus API and
communicates with the Octopus service. The liboctopus_parser library
parses query and answer strings on both sides.

While Octopus is strongly integrated with the rest of Barrelfish, the
ideas it embodies are widely applicable to any OS trying to manage a
complex multicore machine.

4.3.3 Records and Record Queries

Records are the basic data unit in Octopus. Clients add records to persis-
tent storage and retrieve, modify or delete them. They can also register for
addition and deletion events on patterns matching records of interest. Oc-
topus also provides a publish-subscribe API for records which is similar
but bypasses storage.
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Records

Records consist of a name and an optional list of attribute-value pairs. The
syntax is based on JSON (JavaScript Object Notation)[67], since it is easy
to read and write for humans and machines. The following example shows
a record called hw.pci.device.1 representing a PCI network card:

hw.pci.device.1 {

bus: 0, device: 1, function: 0,

vendor: 0x8086, device_id: 0x107d,

class: ’C’

}

Sequential records are a special form of records. Octopus appends a
monotonically increasing number to the name defined by the client. It
returns the new name to the client, allowing clients to create multiple,
unique, ordered records, and serving as the basis for synchronization prim-
itives.

Record Queries

Record queries use an extended version of the record entry syntax, al-
lowing regular expressions for record names and attribute values and the
special character ’ ’ to match to any name or attribute value. Constraints
on attribute values further specify whether records are part of the result or
not. Record updates can depend on the currently stored value, as in SQL’s
UPDATE statement.

The following example matches records with any name but only those
with device <= 1, vendor > 100 and class matching the regular expres-
sion C|X|T belong to the result. An update sets bus to 5, but only if the
current value is 0.

_ { bus: 5, bus == 0, device <= 1,

vendor > 100, class: r’C|X|T’

}
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4.3.4 Record Store
Whenever the Octopus service receives an add or del query from a client,
it parses the query and performs the respective operation on persistent stor-
age. Octopus stores the attribute-value pair list to the storage hash table
with the record name as key. For get and update queries, it matches them
to the stored records and returns the result to the client.

If the client is interested in future add or del events it creates a trig-
ger along with the query and passes it to Octopus. The client specifies
whether the trigger is persistent and should send an event whenever the
query matches, or whether it should be automatically removed after the
first event.

Octopus stores the trigger to the persistent storage hash table. Because
record queries do not need to specify a fixed name, Octopus generates
a trigger ID which serves as the key. Expected attribute-value pairs and
constraints get stored with this ID.

The full record store API of the server is:

(names, err, t_id?) = get_names(q, trg?);

(record, err, t_id?) = get(q, trg?);

(err, record?, t_id?) = set(q, trg?);

(err, t_id?) = del(q, trg?);

(err, t_id?) = exists(q, trg?);

get names returns an array of record names matching the query. get
returns the first record to match the query. set inserts a new or updates an
existing record. del deletes a record. exists is similar to get, but only
returns an appropriate error code. All calls may install a trigger, in which
case the server returns the trigger ID to remove it in the future. Creating
triggers is done as follows:

(trg) = mktrigger(in_case?, send_async, mode, handler_fn,

client_state);

(err) = rmtrigger(t_id);

mktrigger creates and configures a trigger according to flags passed by
clients. It also installs the user handler function and user state. rmtrigger
removes the trigger identified by its ID.
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in case defines the installinf of the trigger only if a specific error hap-
pened during the query invocation (e.g., no record found). send async is
used to indicate whether the trigger event should be returned to clients in
a synchronous or asynchronous fashion. mode is a bitmask used to in-
dicate interests in specific (i.e., add or delete) events. handler fn and
client state are arguments supplied by the user. In case of an asyn-
chronous trigger, liboctopus uses these to call handler fn and sup-
plies client state along with the matching record and event type as an
argument.

4.3.5 Publish-subscribe
Apart from storing records, Octopus offers the publish-subscribe model
to clients. Publishers publish records and subscribers get these records in
form of an event. Octopus does not store published records. The record
format is the same as described in section 4.3.3. Subscriptions are defined
using the same record query language. Similar to triggers, subscriptions
have to be stored to persistent storage. Whenever a record gets published,
Octopus considers stored subscriptions, matches their specified constraints
and, in case of a match, it sends an event to the corresponding client. On
the client side, the same handler function can be used as for triggers. Sub-
scriptions remain installed until they explicitly get removed by the client.
Octopus provides a simple API for the publish-subscribe model described
below.

(subscription_id, err) = subscribe(handler_fn, client_state,

subscription);

(err) = unsubscribe(subscription_id);

(err) = publish(record);

4.3.6 Implementation
Octopus is implemented as a native extension to the SKB. As such it ben-
efits from ECLiPSe’s logical unification, backtracking, constraint evalua-
tion and regular expression facilities. Queries are automatically matched
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to stored records. This reduces code complexity both for applications and
Octopus itself.

Octopus allows searching for records based on attribute values, and
potentially all records need to be considered. While this matching works
fine with ECLiPSe’s backtracking and matching facility, its performance
suffers from doing such a full search. To overcome this problem, Octopus
implements an attribute index specifically to improve matching/search per-
formance. The attribute index remembers all record names having a given
attribute. Thus, Octopus quickly finds all potential matching records. The
index is implemented as a skip list[108], which behaves similarly to a bi-
nary tree. Finding triggers or subscriptions, given a record, is the opposite
problem. Given a record, a bitmap index indicates whether a trigger or
subscription ID is relevant.

4.4 Use-cases
This section presents use-cases, derived from real problems in Barrelfish.
Especially the name service and the device manager (see also chapter 5)
are heavily used in Barrelfish and as such important parts to understand.

4.4.1 Synchronization primitives
Octopus implements high-level synchronization primitives based on records.
These are intended to coordinate distributed applications and are not suit-
able for fine-grained access control among threads sharing an address
space. Following the general goal of this thesis to reduce code complexity
wherever possible, it is clearly a goal to build synchronization primitives
with few lines of code, while still providing the necessary functionality.
The key-value store in combination with change events provides a use-
ful basis for such primitives: new clients can query existing state, such
as whether a client already holds a lock, for example, and existing clients
receive change events, such as a client has released a lock, for example.
Currently, Octopus implements two synchronization primitives. These are
based on the ones in Zookeeper[63]:
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Locks: In an approach reminiscent of eventcounts and sequencers[112],
acquiring a lock creates a sequential record using the lock name, agreed on
by the clients. The client owning the record with the lowest number holds
the lock. Other clients issue an exist call on the previous record to their
own and pass a one-time trigger on its deletion. When the lock holder
releases the lock (i.e., deletes the record), the next waiting client wakes
up on the deletion event. As with eventcounts, no starvation occurs and
the locks are fair in waiting time. The unification of the key-value store
exist call and the event registration for the deletion of a record, which
will wake up the client when it gets the lock, allows the implementation
of distributed locks with only few lines of code. This reduces the code
complexity of the implementation of distributed locks significantly.

Barriers: Barriers ensure that different tasks start executing a section
simultaneously. Octopus contains a double barrier implementation based
on sequential records. Every client entering the barrier creates a sequential
record and queries if the number of records corresponds to the expected
number of clients entering the barrier. If so, it creates a special record indi-
cating that all clients are ready. Otherwise, it creates a trigger waiting for
this special record. Leaving a barrier works the other way around. Every
client deletes the previously created record and waits for deletion of the
special record. The last client deletes the special record which triggers the
event that all clients left the barrier. Again, triggers for creation and dele-
tion of the special record when entering or leaving the barrier respectively
ensure that clients wake up only at the time when all clients have reached
the synchronization point.

4.4.2 Name service

Barrelfish needs a service registry or name service, as does every dis-
tributed system[101, 133]. As explained in section 2.2.5, every service
registers a message channel by name.

Clients resolve them by name, or more complex attribute-based queries.
Octopus allows implementing an expressive service registry in Barrelfish
using records of the form
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servicename { iref: <nr> }

where servicename is the well-known name and <nr> is the internally used
reference expected by Barrelfish’s connection function. Service dependen-
cies are resolved by searching for a specific service name and waiting until
it appears as a record. Octopus’s trigger API allows clients to install trig-
gers for service references. While services, upon which a client might
depend, are not up yet, clients can do useful work. As soon as the service
appears, Octopus sends a notification to the client. An event-based internal
structure of the client directly benefits from this mechanism. Dependen-
cies can easily be solved this way. Furthermore, clients and services are
loosely coupled and do not need to know each other. The only knowledge
a client must have is the service name.

4.4.3 Application coordination

A manycore machine offers a high degree of parallelism. Ideally, applica-
tions make use of real parallelism. The common way of exploiting paral-
lelism is creating threads on multiple cores and synchronizing them using
shared locks. In a Multikernel architecture, the OS assumes there is no
shared memory and no cache coherence. OS services and applications
exploit parallelism by creating process instances on several cores. These
instances have to be synchronized using explicit message-passing. Co-
ordinating instances using the low-level messaging interface quickly gets
complicated. Synchronization protocols have to be designed and imple-
mented over the messaging interface.

The presented synchronization primitives drastically reduce this com-
plexity. There is a trade-off between performance and code complexity. If
it is performance-critical, an application might rather use synchronization
directly based on Barrelfish’s message passing facilities. Otherwise, using
the primitives provided by Octopus might be just as fine.

An example application in Barrelfish is the datagatherer application
presented in section 3.5.3, which collects information of every core. A
separate instance runs on every core and collects per core information.
Gathering per core information does not depend on other instances and the
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instances therefore do not need to be synchronized. However, datagather-
ers also measure access latencies of the cache and memory hierarchy. The
measurements are only stable, if not all instances measure all memory lo-
cations (such as NUMA nodes) at the same time. This would stress the
interconnect which finally leads to the illusion of a flat memory hierarchy.
The datagatherer synchronizes the measurements of the memory hierarchy
by high-level synchronization primitives provided by Octopus.

Applications which want to make use of information collected by the
datagatherer obviously depend on its termination. Each datagatherer in-
stance adds a record after it is done collecting all information. Applica-
tions can install a trigger to get a notification, as soon as the datagatherer
instance terminated. While waiting, the applications can do useful work.

4.4.4 Device management and system bootstrap

Device management and system bootstrap require careful synchronization
between different layers of drivers and OS services. Especially at boot-
strap, the right order of drivers need to be started, depending on what
devices have been discovered by previous drivers. Finally OS services
export higher-level functionality on top of certain devices.

Kaluga, Barrelfish’s device manager, coordinates the starting of drivers
as well as the hardware-related parts of the system bootstrap. Because
CPU cores are treated as regular devices with the CPU driver as device
driver, Kaluga basically coordinates the Barrelfish’s bootstrap. Kaluga
and the system bootstrap are explained in detail in chapter 5.

4.5 Evaluation

The evaluation of Octopus in this section is mainly about code complexity,
because reducing complexity involved in synchronization primitives is one
of Octopus’ main goals. Still, a reasonable performance is of importance
and evaluated in this section as well.
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Functionality C CLP Flex Bison
Octopus 3188 355 150 94
Barriers 102
Locks 87
Semaphores 106

Table 4.1: Lines of code

4.5.1 Code complexity

The code complexity is measured in terms of lines of code needed to im-
plement distributed synchronization primitives. Table 4.1 shows a func-
tionality breakdown with lines of code1. As the table shows, Octopus
itself is implemented partly in C and ECLiPSe. It needs about 3200 LOCs
of C code and about 360 LOCs of CLP. Additionally, the lexer and parser
of the records and record queries are implemented in a handful LOCs of
flex[45] and bison[20]. More importantly, the synchronization primitives
built on top of Octopus are implemented in roughly 100 LOCs of C code.
They only need to add records, install triggers and finally delete records
using the Octopus API. Because the Octopus service runs inside the SKB,
the records are available to any client and therefore these synchroniza-
tion primitives work for distributed synchronization without any additional
protocol necessary. The goal of keeping code complexity low for building
synchronization primitives can be met.

4.5.2 Performance

While high performance is not the primary goal, Octopus should at least
provide reasonable performance. The microbenchmarks in this subsection
prove reasonable performance compared to existing systems.

The test system, on which the measurements were done, is a TYAN
Transport VX50 B4985 PC with two dual-core AMD Santa Rosa CPUs
running at 2.8 GHz. The Octopus server and the client ran on different
cores on the same CPU package. The preallocation of a big heap as de-

1Generated using David A. Wheeler’s SLOCCount
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scribed in section 3.7.2 and the big size of internal dictionary hash tables
reduce garbage collection during the experiments almost completely. Sin-
gle outliers, due to context switches and other system effects, are removed
from the graphs.

The first experiment2 is a strawman comparison to Redis[111].
Implementation-wise, Octopus is similar to Redis, though simpler and less
optimized. The client-server connection on both systems is different. In
Redis, the client-server connection goes through a Unix domain socket,
while for Octopus it is a regular message channel in Barrelfish. The two
test setups are as follows: Redis 2.4.7 runs on Linux 2.6.32 pinned to one
core. The provided redis-benchmark program plays the role fo the client
and performs the measurement. Octopus runs on Barrelfish. A separate
client program performs the measurements. On both test setups, the client
issues get calls with 256 byte payload. The clients measure the achieved
throughput of get calls on both systems

Figure 4.2 shows that the peak for Redis is at about 90000 ops/sec and
for Octopus at around 60000. The scalability of both systems is similar.
The performance hit in Octopus is due to ECLiPSe. Each get call involves
the ECLiPSe engine.

A second benchmark3 therefore measures the overhead caused by
ECLiPSe on get calls. The client retrieves a specific record of an increas-
ing number of stored records, up to 1.4 million.

Figure 4.3 shows the latency to retrieve one record out of a varying
number of stored records, as shown on the graph’s x axis. The “RCP call”
line includes the complete time to retrieve a record. The “ECLiPSe CLP”
line shows only the portion of the time spent in the ECLiPSe engine. The
overhead of ECLiPSe compared to the overall latency it roughly 80%.

The measurements show, that Octopus’ performance is reasonable.
It can be used to coordinate different applications or synchronize a dis-
tributed application without suffering extremely from the performance.
Obviously, if high-performance is necessary, an application-proprietary,
manually optimized synchronization mechanism based directly on Bar-

2The experiment has been conducted by Gerd Zellweger.
3The experiment has been conducted by Gerd Zellweger.
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relfish’s message-passing interface is advantageous. A high-level, generic
coordination and synchronization service can never achieve the same per-
formance as a mechanism specifically tuned to one application.

4.6 Summary
Octopus has been proven to be useful to solve some of the coordination
and synchronization problems found in Barrelfish, as the use-cases demon-
strate. The low code complexity involved in implementing primitives on
top of it are a net benefit. Octopus’ performance costs are acceptable com-
pared to the benefit of having much simpler code to manage distributed
applications and dependency resolving of different drivers and OS ser-
vices. A key insight borrowed from large-scale clusters systems is that it
is beneficial to separate coordination from the rest of the system code.



Chapter 5

Device management

This chapter describes the device discovery and management process with
Kaluga. Kaluga is the device manager in Barrelfish. Kaluga is based on
Octopus records, as described in chapter 4. It is entirely event-driven and
keeps all the state in the SKB.

At power-on of a computer, devices, memory and even CPU cores have
to be initialized before they can be used. Before that, the operating system
has to scan the hardware and check, what kinds of devices are installed
in the machine. This is the process of hardware discovery. It is typically
an ongoing process. The user might plug in more devices at runtime. A
common example is a USB device, which the user can plug in and remove
at any time.

Once a device is discovered, the OS needs to start the right driver and
assign the device to the driver instance. The OS needs to keep track of
discovered devices and associated drivers, a task termed device manage-
ment. More concretely, the OS’s device manager is responsible for device
management.

Part of this work was published in Gerd Zellweger’s master’s thesis[143],
who also implemented most of the code, and in a recent paper[144].

109
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5.1 Kaluga
Kaluga is the device manager in Barrelfish. It coordinates all processes
involved in discovering and operating devices, starting at the bottom with
CPU drivers 2.2, whose devices are CPU cores, up to “regular” devices,
such as an ethernet card driver. Kaluga is based on Octopus (see section 4)
and keeps all state in form of records in the SKB.

As the term “device manager” implies, Kaluga is responsible of man-
aging the process of discovering devices and managing the drivers respon-
sible of initializing and operating specific devices. It does however not ac-
cess any device by itself and therefore also does not discover any device by
itself. Kaluga starts the appropriate drivers at the appropriate time based
on the current state. These drivers either explore the hardware, discover
devices and add information to the SKB, or they attach to a specific de-
vice and initialize and operate it. Kaluga reacts to every hardware-related
information added by drivers. Based on the type of information, it starts a
new driver or possibly signals an already running one. This is an ongoing
process and allows a continuous process of hardware discovery.

To operate correctly, Kaluga needs two types of information. On the
one hand, it needs to know what types of devices are installed, such that it
can start the right device driver. On the other hand, it needs to know which
driver is suitable for a specific device. The former type of information
results directly from the device discovery process, while the latter has to
be defined by the device driver’s programmer, as he is the only one who
knows exactly what kind of driver he implemented. This information is
stored in driver mapping files (see section 5.1.2).

5.1.1 Architecture
Kaluga is implemented as a user-space service on Barrelfish. It is purely
event driven and reactive. The implementation uses Octopus records and
the event mechanism to get notifications about future records added by
drivers. The hardware records are explained further in section 5.1.3.
Kaluga’s task is to start the appropriate driver, whenever a new record has
been added by a driver. It translates the information contained in the record
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Figure 5.1: Interactions between Kaluga, Octopus and the SKB.

to a driver binary by looking up the driver binary name in device mapping
files. The device mapping files are explained in section 5.1.2.

As section 5.2.1 explains, hardware discovery is a recursive process.
Drivers add records about discovered devices. This will trigger Kaluga to
start appropriate device drivers, which will possibly add more records.

Figure 5.1 shows how Kaluga interacts with Octopus, the SKB and
the bus and device drivers. The interaction with Octopus is installing trig-
gers for hardware records and getting notifications about new records. The
interaction with the SKB is unifying hardware ID information with a suit-
able driver binary. Finally, the figure shows that drivers add records about
discovered devices.

5.1.2 Driver mapping files

Every device has a physical device ID of some form, depending on the
type of device (e.g., PCIe device or USB device). To make a device usable
for the system, a specific device driver needs to initialize and operate it.
Every device also has at least one driver binary which is able to operate the
device and export its hardware capabilities in a form such that the upper
layers of the software stack can use it.

Driver mapping files contain a mapping between device IDs and names
of executable driver binaries. The driver mapping files form a hierarchy.
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There is a main file which may include further mapping files for specific
drivers. The driver knows exactly for which device IDs it is suitable. Each
driver should have its own driver mapping file, such that it can be included
in the main driver mapping file at install time1. The driver might specify
a range of device IDs which it can handle. In case multiple drivers have
a mapping for the same device, the device manager choses one to run.
Kaluga loads the main driver mapping file at startup. Because the driver
mapping files are written in CLP, each include statement causes the SKB
to load the included files as well. This part of the necessary information is
now available.
The current format of the mapping files is as follows:

pci_driver{

binary: "e1000n",

supported_cards:

[ pci_card{ vendor: 16’8086, device: 16’107d,

function: _, subvendor: _, subdevice: _ },

pci_card{ vendor: 16’8086, device: 16’1096,

function: _, subvendor: _, subdevice: _ } ],

core_hint: 0,

interrupt_load: 0.75,

platforms: [’x86_64’, ’x86_32’]

}.

The device ID is defined here by the vendor, device, function,
subvendor and subdevice fields. These values are device characteristics
which appear whenever the PCIe driver scans the bus for devices. These
are not the only characteristics provided by the PCIe hardware, but the
ones which make most sense to identify devices based on what they are,
rather then where they are located. Fields like PCIe bus or PCIe device
numbers would make less sense, as these values depend on the slot, into
which the user installed the device. A device driver will never know that in
advance and should only care about constant (and PCIe-slot independent)
values as found in the driver mapping files.

1Barrelfish has no facility to “install” a driver yet. This basically means, that a driver
developer has to add the necessary mapping entries by hand, at the moment.
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Whenever Kaluga receives a notification, that a new PCIe device was
discovered, it considers all the entries by a unification algorithm and finds
the most appropriate driver to start.
interrupt load is for future use and should provide an initial hint

on the expected interrupt load. This allows Kaluga to reason about that
and to distribute drivers, with a high expected interrupt load, to different
cores.

5.1.3 Hardware records
Kaluga queries hardware records to learn about installed hardware. It is-
sues a get names call and installs a trigger, such that it gets future records,
whenever a new device has been discovered. It makes use of the regular
expression facility provided by Octopus to specify a range of names, all
related to discovered hardware. The format of the records is as following:

r’hw\\.some_name\\.[0-9]+’

Basing device management on Octopus records has a number of ad-
vantages. First, dependencies are resolved by the event mechanism. For
example, the PCIe driver first initializes the basic PCIe infrastructure, be-
fore it starts adding device records. This ensures, that specific device
drivers start only after the basic configuration is done. Second, the driver
framework is flexible and modular. Whatever device might be found in the
future, it will work, as long as a driver is available. It does not depend on
the implementation of Kaluga. In Barrelfish, every device is treated like
a regular device with a device driver, even CPU cores. By adding records
also for CPU cores, Kaluga starts the CPU driver for every discovered
core, although the mechanism of actually starting the core is somewhat
different than for PCIe devices. Finally, this driver architecture naturally
supports hotplugging. Independent, of whether the initial hardware scan
finds a device or a hotplug event later triggers the bus driver to initialize
the new device, the bus driver will add a hardware record for the discov-
ered device. Because Kaluga keeps the trigger for ever, it will be notified
about the new device and will start a driver, whenever it receives an event.
This works even for cores. Similarly, Kaluga can easily be extended to
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support deletion of records. In this case, it might shut down the associated
device driver and possibly notify further dependent services.

5.2 Hardware discovery
Hardware discovery refers to the process of learning, what kinds of hard-
ware are installed in a given machine. Depending on the type of hardware,
there are different techniques to be used to discover installed hardware.
This is not a problem, because Kaluga only coordinates hardware discov-
ery. It is the responsibility of the concrete bus and device drivers to use
the right technique to discover hardware.

At the early stage of booting, the hardware discovery process has to
check for the availability of basic hardware features. In Barrelfish, this is
partly done by the basic system and partly by Kaluga, as explained in more
detail in section 5.2.1. Based on that, the discovery process starts the right
platform driver which finally scans the installed hardware to learn which
drivers need to be started.

Hardware discovery needs knowledge about the current state. Only
after the architecture is known, concrete hardware features can be queried.
Likewise, only after knowing, whether a PCIe bus is available, can PCIe
devices be scanned.

This section explains the hardware discovery life-cycle as well as the
basic information required for it to work correctly. A short evaluation
shows that Kaluga, based on Octopus and the SKB, is implemented with
few lines of code while providing a rich functionality.

5.2.1 Hardware discovery life-cycle in Barrelfish
On x86-based system, the BIOS runs only the bootstrap core, on which
the OS gets started-up. All the other cores remain in a halted state and the
OS is responsible to start them. Devices are not fully configured, only the
really necessary ones to load the OS get configured by the BIOS.

The hardware discovery life-cycle starts by discovering the base archi-
tecture and basic hardware features on the single core, on which Barrelfish
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starts up. It adds all basic information about the architecture to the SKB,
which is already running at that stage (see section 3.5.5).

As an example, the first CPU driver and monitor (see section 2.2.2)
already know on what architecture they are running. This information is
known (at least at a high-level), because the right binary is loaded and
executed by the bootloader. The monitor adds a fact2 to the SKB, saying
of which architecture at least the first core is.

Kaluga, running on the first core, queries the CPU core for the ACPI
availability flag. Based on ACPI availability, Kaluga starts the ACPI driver.
On x86-based systems, ACPI is the starting point to find “root” pieces
of hardware, such as PCIe root bridges, I/O APICs and CPU cores. The
“root” pieces of hardware have a separate driver which Kaluga starts based
on the new record added for the “root hardware”. It is the responsibility
of the concrete drivers to initialize the “root devices” and to further query
them, whether more hardware is attached under them. From there it con-
tinues with the rest of the hardware by letting drivers scan the device tree
of their responsibility.

To continue the example, Kaluga starts a PCIe bus driver, if the ACPI
driver discovered a PCIe root complex. The PCIe bus driver enumer-
ates devices under this root, performs a basic address configuration (see
chapter 6) and generates new records. This triggers Kaluga to start PCIe
drivers, such as, for example, a PCIe USB host controller. This driver
in turn enumerates the USB bus and adds further records causing Kaluga
to start USB device drivers, and so on. CPU cores beyond the first one
are treated the same as regular devices. Whenever Kaluga receives a
record event for a core (typically from ACPI), it starts an appropriate ker-
nel (or “CPU driver” in Barrelfish parlance) based on the driver mapping
database.

The discovery and driver startup process is recursive. Starting a driver
is caused by previously adding a record by another driver. Every driver
can, in turn, add more records, which will cause Kaluga to start more
drivers. This is an ongoing and never ending process. Figure 5.2 shows
the hardware discovery life-cycle.

2In this case a regular fact, not a record.
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Figure 5.2: Hardware discovery life-cycle.
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5.2.2 View hotplugging as the default case
Having such an event-based device manager, which interacts with the
SKB, is the basis for hotplugging devices. In fact, all devices in Barrelfish
are treated as hotplugged devices at least from the perspective of device
management.

While it is common to support hotplugging USB devices, it is less
common to support CPU hotplugging in current commodity systems. The
driver framework of Barrelfish offers this functionality in a natural way.
Kaluga’s architecture is the first step to support hotplugging in the system.
Even more importantly, it is the first step of supporting a completely dis-
tributed system structure. This kind of device management and ongoing
device discovery process, in combination with treating CPU cores as reg-
ular devices with a device driver, allow adding and removing any device –
including cores – at runtime.

Obviously, drivers (and finally applications) need to support hotplug-
ging as well, a feature, which leads to many interesting questions, should it
be supported at its full flexibility in a distributed-systems-like OS. Drivers
(and applications) need to react correctly on hotplug events. Especially
the removal of devices may cause interesting interactions between differ-
ent running services that depend on the device. Kaluga, however, is the
first enabling step towards this direction.

5.2.3 Minimize basic architecture and platform informa-
tion

Although most of the hardware knowledge can be queried and derived by
looking at different pieces of information, some basic “hard-coded” infor-
mation is necessary to boot a computer. First of all, the system’s boot-
loader needs to load the right binary for the architecture, which means
that this information is known, at least to the bootloader. Depending on
the hardware system, knowledge about basic memory mappings or avail-
able mechanisms to query hardware information is necessary to load the
right drivers which finally scan the hardware. For example, knowing that
the architecture is “x86 32” is not sufficient, if the code runs on a SCC.
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The memory architecture is completely different compared to the memory
architecture of a regular “x86 32” computer.

Supporting a flexible, modular, distributed-systems-like OS that tar-
gets an unforeseeable range of diverse hardware, demands that the “hard-
coded” or a priori knowledge, even of basic information, is minimized.
This makes it possible to hotplug complex devices, which provide more
cores (such as an SCC, for example), in the future.

At startup of Barrelfish, only the CPU driver, the monitor, the memory
server, the device manager and the SKB run on the bootstrap core. At this
stage it is already clear, what type of architecture the system has, because
the right binaries have been loaded by the bootloader. This basic infor-
mation is, to some extent, “hard-coded” and can go directly to the SKB.
It is however the only “hard-coded” information necessary to decide how
to continue. For example, it is enough information to decide, whether the
ACPI feature flag needs to be queried or not and finally, whether the ACPI
driver should be loaded or not.

5.2.4 Device information
There are two classes of device information: the high-level information,
that a device is installed and the detail knowledge about how it is working.
In order to start the right driver, Kaluga needs to know about a device’s
availability. It does however not need to know exactly how the device
works.

The detailed device knowledge can be in a format suitable to the device
driver. This knowledge gets mainly processed by the driver and should
be optimized for its needs. In contrast, the high-level information, that
a device is installed, should be as generic as possible. This information
is added in form of records (as described in section 5.1.3) and used by
Kaluga to get notifications. The set of different records added should be as
small as possible, because for every record format, Kaluga needs to install
a trigger to monitor it.

The PCIe bus driver is a complex hardware configuration example,
which needs a deep hardware knowledge (see chapter 6). The hardware
knowledge is gained by scanning the PCIe hardware and storing basic in-
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formation using different facts to the SKB. Later on, PCIe uses these facts
to run the PCIe address allocation algorithm. This knowledge is mostly lo-
cal to the PCIe bus driver and PCIe device drivers. But Kaluga only needs
to know that PCIe devices are installed, such that it can start the appropri-
ate device driver. The basic PCIe records therefore only needs to provide
information about the vendor, device ID and so forth, as described in sec-
tion 5.1.2. It does not care about base addresses or requesting physical
memory sizes.

5.3 System Bootstrap
Booting an OS is a complex task. Hardware has to be initialized and ex-
ported to clients, drivers and OS services have to be started. On mod-
ern hardware, other CPU cores also need to be started by the OS. So far,
Kaluga and Octopus proved very useful in simplifying the bootstrap pro-
cess in Barrelfish. The current solution builds on both the name service
and the Kaluga device manager.

As the hardware life-cycle section explained (see section 5.2.1), a sig-
nificant amount of the bootstrap process depends on discovering and ini-
tializing devices by starting the appropriate device drivers. Drivers not
only start and operate the device, they also register with the name ser-
vice to make the device available to the rest of the system. Depending
services wait for required service references before they register with the
name service. This way, the OS boot process is well coordinated. The
uniform abstraction of dependencies behind Octopus records and triggers
has significantly reduced special-case code in many parts of the OS.

5.4 Evaluation
The evaluation in this section is of a qualitative nature. First, the sec-
tion evaluates whether Kaluga works correctly by checking that drivers
for available devices get loaded. Second, the section evaluates the number
of lines of code necessary to implement Kaluga. It is one of the thesis’
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main goals to keep code complexity as low as possible. Performance is
not evaluated, as the bootstrap process depends on various things not con-
trollable solely by Kaluga.

5.4.1 Correctness
“Correctness” in the case of a device manager means that the right drivers
should be started according to the driver mapping database, whenever a
new device was found by some previous device driver. It is therefore nec-
essary to manually inspect the system configuration and to derive expec-
tations on which drivers will get loaded by Kaluga.

Evaluating whether Kaluga works correctly was done by booting Bar-
relfish on our different x86 64-based development machines and by ensur-
ing that all the drivers, for which a device is available in the system, get
started. All of the machines support ACPI and all of them have at least
one PCIe bus and at least one e1000 network card. Kaluga should there-
fore start the PCIe bus driver and at least the e1000 driver. By manually
checking the booted system, it became clear that the drivers got started
correctly by Kaluga.

5.4.2 Code complexity
Table 5.1 shows a breakdown of the LOCs used to implement Kaluga and
the device mapping files. Kaluga is implemented in only 759 lines of C
code3. Additionally, there are 78 lines of ECLiPSe code in form of driver
mapping files and unification algorithms to match stored device IDs with
device IDs passed to Kaluga by record events. Kaluga loads these files at
startup. This is why the LOCs account for Kaluga in this evaluation. The
small device manager is capable of fully controlling device drivers. The
ECLiPSe approach, used to reason about suitable driver binaries, offers a
great flexibility on deciding which drivers to start.

Currently, Barrelfish only has five drivers as separate modules which
can be started on demand by Kaluga. This explains, why the driver map-

3LOC counts were generated using “SLOCCount” by David A. Wheeler.
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Functionality C ECLiPSe

Kaluga 759
Unification algorithm in driver mapping files 19
Driver mapping entries for 5 drivers 36
Data structure definitions 23
Total 759 78

Table 5.1: Lines of code

ping files only consist of 78 lines of ECLiPSe code. The driver mod-
ules have to appear as multiboot modules in the menu.lst file, otherwise
Kaluga has no access to the binaries4.

5.5 Related work
Devices in Linux are represented by entries in the /dev directory. Early
versions of Linux used a statically populated directory with a fixed name
to major/minor number mapping according to the “Linux Assigned Names
and Numbers Authority” (lanana)[77]. This approach had a number of
problems[75]. First, devices were bound to names in /dev according to
the enumeration order. The device, which was found first, got the first
name of this class of devices. In the case of USB devices, for example,
it means that USB devices can get new names, if other USB devices are
plugged-in or removed. Second, Major and minor numbers are only 8bit
values. The static mapping of major numbers to device classes limit the
classes of devices, and if vendors invent new devices, it becomes increas-
ingly hard to assign a new static major number. Third, /dev became too
big. A statically populated Red Hat 9 has over 18000 entries[75]. Re-
cent versions of Linux use udev which populates the /dev directory with
device nodes, whenever devices are actually discovered by the kernel. In
contrast to the older devfs, udev does not enforce any name policies in
the kernel, but follows name policy rules defined in configuration files.

4At the moment, Barrelfish does not have a filesystem. If it had one, it still would have
to be available from a RAM disk together with the disk driver, because these modules are a
requirement to load files from a disk.
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FreeBSD uses a kernel-based DEVFS[68] on which device nodes are
created on demand whenever a new device gets discovered. The devd
daemon[83] receives events from the kernel when new devices are discov-
ered or devices disappear. It is able to configure devices and to load device
drivers by considering a configuration file telling which driver is suitable
for which device. devd’s configuration files allow the administrator to
define arbitrary commands to be executed on every attach, detach and no-
match event. The nomatch event is generated, if no currently available
(loaded or compiled-in) driver claimed the discovered device.

5.6 Summary
Device management on a distributed systems-like operating system re-
quires a flexible approach of device management. The distributed systems
nature assumes that nodes (like CPU cores or devices) join or leave the
system during runtime. Managing hardware and system bootstrap is com-
plex enough, but allowing hotplugging and removal of any kind hardware
complicates it even more.

Further, Barrelfish targets a wide range of diverse hardware. It is un-
known, how the hardware looks like and how architectures ar going to
evolve. The effort of manually adapting software to new architectures,
as they emerge, is too high. Instead, the system should adapt itself to the
actual hardware. For device management, this means, that the device man-
ager should not assume any knowledge. Further, it should not need to deal
with concrete hardware knowledge. Keeping the management at a high-
level, such that it really only performs the task of management, abstracts
the device manager completely from the hardware. The abstracted high-
level unification mechanism to match driver binaries and devices works on
all hardware platforms, even on future hardware.

With Kaluga, Barrelfish’s device manager based on Octopus, a first
step towards a distributed system with hotplugging as the default case
could be realized. Kaluga is flexible and easily extensible, because the
reasoning is based on Octopus records and on knowledge in form of CLP
facts. Furthermore, the evaluation shows, that Kaluga has a low code com-
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plexity, which is one of the main goals of the thesis.
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Chapter 6

Declarative PCI
configuration

This chapter presents the first case study of the SKB. To validate the claim
that the CLP approach can be used successfully for low-level hardware
configuration, I implemented the PCIe configuration problem as a high-
level declarative CLP algorithm. The PCIe configuration problem is one
of the most complex hardware configuration problems found in current
systems. Therefore, it is a good case study to demonstrate that even com-
plex problems can be solved by means of CLP programs.

Programming PCIe bridges in a modern PC is a surprisingly complex
problem, and it is getting worse as new functionality such as hotplug ap-
pears. Existing approaches use relatively simple algorithms, hard-coded
in C and closely coupled with low-level register access code, generally
leading to suboptimal configurations.

The PCIe driver implemented for this thesis follows a radically new
approach. Along the discussion of policy/mechanism separation (see sec-
tion 3.4.1), this PCIe driver separates hardware configuration logic (al-
gorithms to determine configuration parameter values) from mechanism
(programming device registers). The latter is implemented in C, and the
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physical addresses

root bridge

bridge 3

bridge 2

bridge 1

dev 2dev 1

dev 4dev 3

dev 5 dev 6 dev 7

Figure 6.1: Example PCI tree with one root, three bridges, and 7 devices,
showing the decoding of addresses from one of the three physical mem-
ory spaces (e.g., non-prefetchable). Bridge base addresses and limits are
bounded by the union of the base and limit addresses of their children.

former as concise CLP algorithm in the SKB. The PCIe driver implements
full PCI configuration, resource allocation, and interrupt assignment.

The work presented in this chapter has been published[116, 117].

6.1 Introduction

Configuring physical address regions of the PCIe bus for all devices and
bridges is a complex problem. Many dependencies between base ad-
dresses of devices and bridges have to be met and special cases have to be
handled. Fortunately, the PCIe allocation specification follows clear rules
and, as stated in section 3.3.4, this makes it a candidate for a CLP-based
solution. The same is true for allocating and routing interrupts. Existing
operating systems code uses relatively simple algorithms to configure the
PCIe bus. These algorithms are simple by the necessity of being hard-
coded: they require low-level access to device registers to achieve their
goals, and usually run early at system start-up within the OS kernel.

Figure 6.1 illustrates a simplified PCIe configuration. The OS code
must allocate memory regions to each PCIe device and each PCIe bridge
in the bus hierarchy, in such a way that every device receives correctly-
sized areas of physical addresses in two different address spaces (I/O and
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memory mapped) and two distinct address regions in the memory mapped
case (prefetchable, and non-prefetchable). These areas must all be aligned
to device-specific boundaries, may not overlap, and should fit into the to-
tal amount of physical address space available for such hardware in the
system.

This allocation problem is particularly hard, because there are numer-
ous restrictions on device allocation: certain devices must be placed at a
fixed address, others incorrectly decode addresses not assigned to them,
and platform hardware components such as ACPI sometimes reserve re-
gions of physical address space, which means that the address ranges must
be allocated around these “holes”. Furthermore, the list of problems varies
from machine to machine, requiring the allocation code to adapt automat-
ically to the underlying hardware.

Most existing operating systems deal with this problem with simple
algorithms in C. Special cases are intermangled in the main allocation
code. The result is complex and hard to debug, and (as the evaluation
in section 6.5 shows) can lead to unpredictable and inefficient allocation
of space. In some cases (such as Linux on Intel platforms) the OS does not
even try to solve the full allocation problem, instead it relies on the plat-
form BIOS to provide an initial allocation, which is difficult to change.

In this chapter I show that pushing the allocation algorithm logic into
the SKB and separating it from the configuration mechanism, which writes
the derived values into the base address registers, leads to much simpler,
more maintainable and easily portable code. I exploit the unification facil-
ity of ECLiPSe to turn PCIe information into knowledge about bus hierar-
chy and I model the actual hardware-given constraints and allocation rules
as constraints on base addresses per PCIe device. Only the register access
functions are written in C. These are extremely simple, because they just
write the derived addresses into base address registers. The result is a PCIe
bus driver, which completely solves a complex problem with few lines of
code.
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6.2 Background: PCI allocation
Configuring the PCIe bridges found in a typical modern computer is em-
blematic of a wide class of hardware-related systems software challenges:
it involves resource discovery followed by the allocation of identifiers and
ranges from compact spaces of identifiers and addresses. More impor-
tantly, a range of hardware bugs and/or ad-hoc constraints on particular
devices lead to a plethora of special cases which make it hard to express
a correct algorithm in imperative terms. Worse, new hardware (whether
system boards or devices) appears all the time, and system software must
continue to work, or evolve to handle new cases with a minimum of dis-
ruptive engineering effort.

This section describes the PCI programming challenge in detail by
starting with the “idealized” problem, which appears relatively straightfor-
ward, and by progressively introducing the complexities that, combined,
are the reason that even modern operating systems only partially solve the
problem.

6.2.1 PCI background
A PCI (or PCI Express) interconnect is logically one or more n-ary trees
whose internal nodes are bridges and whose leaves are devices[25, 104].
The root of each tree is known as a root bridge or root complex. Con-
nections in the tree are known as buses (in legacy PCI they are electrical
buses, whereas in PCI Express the bus is a logical abstraction over point-
to-point messaging links). Non-root bridges are said to link secondary
buses (links to child bridges and devices) to a primary bus (the link to the
bridge’s parent). High-end PCs often have two or four root complexes, and
hence multiple PCI trees within a single system. Non-root devices can be
attached to any bus in a PCI interconnect. Each device implements one or
more distinct functions. A PCI “function” is in fact what most people think
of an independent “device” which has its own bus address represented by
the bus number, the device number and the function number and which
operates independently of other functions.

Driver software on host CPUs accesses PCI functions by issuing mem-
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ory reads and writes or (in the case of the x86 architecture) I/O instruc-
tions. These requests are routed down the tree by the bridges, before being
decoded by a single leaf device. Each function decodes a portion of the
overall memory and I/O address spaces using a mapping that is configured
by the host system through standard PCI-defined registers on each bridge
and function.

Each function of a non-bridge device may decode up to 6 indepen-
dent regions of either memory or I/O address space. These regions are
defined and configured by base address registers (BARs) implemented
by each function. The PCI driver queries each BAR to determine its re-
quired size, alignment, address space (memory or I/O), and, in the case
of a memory-space BAR, whether the memory is prefetchable or non-
prefetchable, and then reprograms the same registers to allocate definite
addresses. Although it goes against strict PCI terminology, in the rest of
this chapter the term “device” denotes a PCI function, i.e., a single logical
device with up to 6 BARs.

Bridges also decode addresses to route requests between their parent
and secondary buses. Unlike other devices, however, bridges use three
pairs of base and limit registers instead of BARs, one each for prefetch-
able memory, non-prefetchable memory, and I/O space. Each bridge there-
fore decodes 3 independent, contiguous regions of IO or memory address
space. The addresses used by every device below a bridge (including
bridges on secondary buses) must lie within these three regions.

In summary, a host CPU accesses a PCIe device by issuing a transac-
tion on the system interconnect with a physical address that lies in a region
decoded by the root bridge of the corresponding PCIe tree. This is routed
down the tree by bridges; at each level, each bridge on a bus compares
the address issued by the CPU to the ranges defined by its base and limit
registers. If it matches, the bridge forwards the request to its secondary
bus. Each device on a bus compares the address to the regions defined by
its BARs, and if the address matches, consumes it and generates a reply.

The PCIe programming problem is to configure the base and limit reg-
isters of every bridge, and the BARs of every device function, to allow all
the hardware registers of every device to be accessible from a CPU. As
Figure 6.2 shows, this can be achieved in many different ways, leading to
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different usage of the available physical address space and different device
locations in that space.

The next section specifies the requirements for any PCIe programming
solution, starting with the basic properties of a solution in the “ideal” case,
and progressively refining the list by adding real-world complications.

6.2.2 Basic PCI configuration requirements

Every bridge in a correctly-configured PCI tree decodes a subrange of the
addresses visible on its parent bus. In order for all devices behind a bridge
to be reachable, PCI requires that:

1. The bridge window, defined by its base and limit registers, must
include all address regions decoded by all devices and bridges on
the secondary bus.

In order that a request is forwarded by at most one bridge, sibling bridges
sharing a bus must decode disjoint address ranges. Since a bus may contain
both bridges and devices, all bridges and devices on a given bus must
decode disjoint address ranges within the range of the parent bridge. This
applies in all of the address spaces:

2. Bridges and devices at the same tree level (siblings) must not over-
lap in either memory or I/O address space.

3. The prefetchable and non-prefetchable memory regions decoded by
a bridge or device must not overlap.

Regions of addresses in PCIe must also be aligned. For a BAR, the base
address must be “naturally” aligned at a multiple of the region’s size. Sim-
ilarly, a bridge’s base and limit registers also have limited granularity, giv-
ing us the following alignment constraints:

4. BAR base addresses must be naturally aligned according to the BAR
size.
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Figure 6.2: Alternative PCI configurations (only memory space resources
are shown)
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5. Bridge base and limit register values for both memory regions must
be aligned to 1MB boundaries.

6. Bridge base and limit register values for the I/O region must be
aligned to 4kB boundaries.

These requirements constrain the possible locations of device BARs and
child bridge base and limit registers within the region decoded by the par-
ent bridge, potentially leading to gaps in address space for padding, as in
Figures 6.2(a) and 6.2(b).

As described so far, configuring a PCIe tree is a non-trivial problem,
but can still be efficiently programmed by, for example, executing a post-
order traversal of the PCIe tree, sorting devices and bridges by descending
alignment granularity, and allocating the lowest suitable address range in
the appropriate address space at each step. Unfortunately, requirements
like the need to align region addresses make it non-trivial to generate con-
figurations that make efficient use of address space, and the simple post-
order traversal results in a solution like that in Figure 6.2(a) where large
padding holes need to be inserted between devices.

The following subsections progressively list the additionally compli-
cations that make an imperative solution to this problem a considerable
programming challenge.

6.2.3 Non-PCIe devices
The first complication is that certain non-PCIe devices and hardware reg-
isters appear at fixed physical memory addresses inside the region allo-
cated to a PCIe root complex – for example, IOAPICs and other “plat-
form” devices on PC systems. The presence and location of these devices
vary from machine to machine and may be discovered through platform-
specific mechanisms such as ACPI[59]. For correct operation, no PCIe
device should be configured to decode such an address region.

7. Devices must not decode reserved regions of physical address space
given by, for example, ACPI, or used by other known non-PCIe de-
vices such as IOAPICs.
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6.2.4 Fixed-location PCIe devices
Some PCIe devices may be initialized and enabled by platform firmware
at early boot time, for example USB controllers, network interfaces, or
other boot devices. Naı̈vely reprogramming the BARs of such devices
may lead to machine check exceptions or crashes since the device may be
active, and performing DMA operations. Most operating systems avoid
reprogramming the BARs of such devices, which means that their existing
address assignment must be preserved. This further constrains the address
ranges usable by parent bridges.

8. Certain PCIe devices determined at boot cannot change location,
and must retain addresses assigned to them by the BIOS.

6.2.5 Quirks
Hardware has bugs, and both devices and bridges can report incorrect in-
formation, fail to support valid resource assignments, or behave incor-
rectly when specific register values are programmed. These problems
are known as PCIe “quirks” and affect a wide range of shipping devices
– the Linux 2.6.34 kernel lists 546 quirks – leading to a collection of
workarounds in commodity operating systems. As Table 6.1 shows, in the
Linux kernel there were between 20 and 50 commits to the file quirks.c
(which contains workarounds for buggy or otherwise anomalous PCIe de-
vices) every year since 2005. Since new hardware appears every year, and
does not seem to be any less complex or buggy with time, this trend is
likely to continue and therefore a clean, portable, maintainable, and easily
evolvable way to handle quirks in software is desirable.
The PCIe quirks currently handled by the Linux kernel mostly fall into the
following categories:

• devices that provide incorrect information about their identity as
bridges or non-bridges;

• devices which decode more address range than advertized, or which
decode address regions not assigned to them;
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Year Number of commits
2005 26
2006 47
2007 49
2008 43
2009 42
2010 23

Table 6.1: Changes to Linux quirks.c

• standard devices which are hidden by platform firmware, but which
could otherwise be normally used;

• undefined device behavior (data loss on the bus, reduced bandwidth,
system hangs, etc.) when particular (and otherwise valid) values are
written to the device’s configuration registers.

In the latter case, the PCIe configuration process must ensure the problem-
atic register values are never written, which imposes additional constraints
on valid address assignments. Thus:

9. Configurations that would cause problematic values to be written to
registers on specific devices must be avoided.

10. Incorrect information from PCIe discovery must be corrected before
calculating address assignment.

A further complication arises from the ambiguity as to whether some hard-
ware is a PCIe device or not. For example, on some (but not all) contem-
porary PC systems, IOAPIC registers appear to software as the BAR of a
PCIe device, but the IOAPIC is also defined as a “platform device” whose
location in the physical address space can also be configured using other
mechanisms (such as setting the base address value by ACPI mechanisms),
or in some cases may not be changed as this would violate assumptions in
firmware such as ACPI or would simply crash the machine, because, while



6.2. BACKGROUND: PCI ALLOCATION 135

routing interrupts, the IOAPIC cannot be reached anymore. On such sys-
tems, the BAR corresponding to the IOAPIC must be programmed with a
fixed value to ensure it is consistent with other assignments of the address.
This can be summarized as follows:

11. Certain platform devices appearing within a BAR of a regular PCIe
device or bridge must be treated as PCIe devices with a fixed address
requirement.

6.2.6 Device hotplug

Hotplugging, the addition or removal of PCIe devices at runtime, raises
another challenge. When a device is plugged in, the OS is notified by an
interrupt from the root bridge, and must allocate resources to the BARs
of the newly-installed device before it can be used. However, this may
require reconfiguring and/or moving the address allocation of bridges and
other devices in order to make enough address space available for the de-
vice, since it was not present at system boot.

Changing the resource allocation of existing devices requires the driver
to temporarily disable the device, potentially saving its current state first.
After the new resources are programmed to the BARs, the driver needs to
restart the device using the newly allocated resources. Depending on the
device, it may need to bring the device to the saved state.

This is a disruptive process and, worse still, may not be supported by
all devices, so the reallocation of resources which occurs on hotplug typi-
cally attempts to move the fewest possible existing devices and bridges.

12. Configuration should minimize the disruption caused by future hot-
plug events as much as possible.

13. Hotplug events should cause the minimal feasible reconfiguration of
existing devices and bridges.

14. Hotplug-triggered reconfiguration may not move devices whose drivers
do not support relocation of address ranges.
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6.2.7 Discussion

It should by now be clear that PCIe configuration is a somewhat messy
problem characterized by a large (and growing) number of hardware-specific
constraints which nonetheless have effects which propagate up and down
the PCIe tree. Consequently, most “clean” solutions written imperatively
in a language like C sooner or later fall foul of an exception which can
greatly complicate the code, compromise its correctness, reduce the ef-
ficiency with which it can manage physical address spaces, and in some
cases prevent it from supporting the full PCIe feature set.

The PCIe specification[25, 104] describes the mechanisms and re-
quirements for correct configuration of a PCIe system, but does not specify
any particular algorithm to be used in this process, leading to a variety of
different (usually incomplete) solutions in current systems. These solu-
tions are being iteratively refined and improved to handle more complex
scenarios such as device hotplug[89, 134], leading to greater complexity.

A resource allocation algorithm for a hierarchical tree structure such
as PCI has been patented by Dunham[38]. This algorithm sorts devices
with fixed requirements according to their base address in ascending order,
and all other devices according to their alignment requirements (size) in
descending order. It then allocates resources to devices and bridges using
a first-fit strategy starting at the lowest-level secondary bus, allowing it
to determine the size requirement for the lowest-level bridge. Once its
size is set, a bridge is then treated as a fixed-size device for allocation at
the upper levels, and placed using the same first-fit allocation. Bridges
are considered to have fixed address requirements if a device at any level
below the bridge has a fixed requirement. As it encodes a specific traversal
of the resource tree, this algorithm is roughly comparable to the postorder
traversal discussed in section 6.5.5 and used in varying forms by several
current systems.

Most current operating systems, including Linux[115, 134] and
FreeBSD[13] on x86-based platforms, rely on platform firmware (BIOS
or EFI) to allocate resources to most devices before the OS starts, and then
run one or more post-allocation routines[12] to correct any problems in the
allocation, allocate resources to devices left unconfigured by the firmware,
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and handle known quirks as devices are discovered and started. This ap-
proach cannot guarantee success (though it often works): if a bridge is
programmed with an address region that is too small to allocate all the
devices behind it, there may be no way to grow the size of the bridge’s
address region without moving other bridges, and thus some devices be-
hind the bridge will be rendered unusable despite sufficient address space
being available overall. This problem is exacerbated by device hotplug,
as it is impossible to predict at start-up the required size of all devices.
Even so, this simplistic allocation strategy leads to substantial code com-
plexity: the complete PCIe drivers of x86 Linux and FreeBSD account
for approximately 10k and 6.5k lines of C code respectively, and device-
specific quirks account for an additional 3k lines of code in Linux.

On hardware platforms other than x86 (such as Alpha/AXP),
the firmware does not implement PCIe configuration, and Linux instead
performs a complete allocation using a greedy approach: devices are sorted
by their requested size in ascending order, and resources are allocated for
each device in that order[115]. This can also lead to unusable devices
behind a bridge, due to a suboptimal ordering of devices causing a short-
age of address space. Note also that very little code is shared between
this implementation and the one for the PC platform: bug fixes or feature
enhancements for one architecture may not be easily applied to another.

Until recently, Microsoft Windows used a similar strategy to x86 Linux
and FreeBSD for PCIe configuration, running a fix-up procedure to correct
deficiencies in the firmware allocation. As with Linux and FreeBSD, this
was unable to resize or change the address regions decoded by bridges,
leading to potentially unusable devices[90]. Windows Vista and Server
2008 introduced a new re-balancing algorithm[89], allowing a bridge’s re-
sources to be modified according to the needs of its secondary bus, and
increasing the likelihood that all PCIe devices could be configured. How-
ever, this requires additional driver support for re-balancing, and the itera-
tive approach can lead to highly complex multi-level re-balancing. Multi-
level re-balancing is a potentially complex operation because increasing a
bridge’s window size can require the bridge to be moved to a new address
region, in turn requiring more space from the parent bridge due to address
alignment constraints. In the worst case, multi-level re-balancing can lead



138 CHAPTER 6. DECLARATIVE PCI CONFIGURATION

to a complete permutation of the PCIe tree.

6.3 PCIe resource allocation

The previous section detailed the PCIe configuration problem and current
approaches to solving it. This section describes the implementation of
PCIe configuration in Barrelfish, and the following section 6.4 describes
a solution to the closely-related problem of interrupt allocation, before
evaluating both in section 6.5.

PCIe resource configuration can be viewed as a constraint satisfaction
problem. For a given system the variables are the base address allocated to
each device BAR, and the base and limit of each bridge for each memory
region it decodes. A correct solution may be expressed as an assignment
of integer values to these variables satisfying a series of constraints: align-
ment, sizes, and non-overlap of regions.

The difficulty in PCIe resource allocation arises from satisfying these
complex constraints. Such complexity is difficult to manage in a low-
level systems language like C, but fortunately its runtime performance is
not critical to the functioning of the system as a whole. This gives the
freedom to reformulate it in a declarative language, where the challenge
becomes closer to defining what result is required, than how the result is
to be produced.

The implementation of the PCIe resource configuration algorithm is
a constraint logic program. This program operates on a high-level data
structure representing the PCIe tree, consisting of numeric variables and
constraints between them that determine the possible solutions. Rather
than worrying about how to allocate concrete addresses to bridges and
devices, it is important to specify the correct set of constraints to guide
the CLP solver. Before explaining the constraint logic in detail, the next
section describes the separation between C and CLP code.
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Figure 6.3: Interaction between the PCIe bus driver and the SKB.

6.3.1 Approach

The PCIe driver in Barrelfish explicitly separates the PCIe configuration
algorithm, expressed in CLP and running in a user-space service, from the
register access and device programming mechanisms, implemented in the
usual C code as part of the PCIe subsystem of the OS. This has several ad-
vantages. First, it decouples the details of the configuration algorithm from
the device access code, allowing to exchange and evolve the algorithm in-
dependently of the device access mechanisms. Second, the algorithm is
expressed only in terms of the generic PCIe bus – all architecture-specific
details are confined to the device access code, or to quirks expressed inde-
pendently of the main logic. This makes the allocation algorithm portable,
because it only operates on high-level facts about the PCIe devices, bridges
and memory regions. Finally, the device programming code written in C
remains small, simple and robust, reducing the likelihood of bugs. The
CLP code is loaded and executed in the SKB.

Figure 6.3 shows the steps performed to configure the PCI bus using
the declarative algorithm running in the SKB. The explanation below of
the steps taken during configuration of the PCI bus refer to this figure.

The PCIe driver performs device discovery as the first step in config-
uring the PCIe bus (figure 6.3). The location of root bridges is determined
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by platform-specific mechanisms such as ACPI[59]. The driver then walks
the entire bus hierarchy, determining the complete set of bridges, devices
and BARs that are present by reading out PCIe registers. During this step
it also assigns bus numbers to un-numbered bridges and disables address
decoding such that the newly computed addresses can later be safely pro-
grammed. As part of this pass, the PCIe driver inserts high-level ECLiPSe

facts in the SKB (step 2 in the figure). These facts describe the set of
present bridges, devices and BARs, according to the following schema:

rootbridge(addr(Bus, Dev, Fun),

childbus(MinBus, MaxBus),

mem(Base, Limit)).

bridge(pcie | pci,

addr(Bus, Dev, Fun),

VendorID, DevID, Class, SubClass,

ProgIf, secondary(BusNr)).

device(pcie | pci,

addr(Bus, Dev, Fun),

VendorID, DevID, Class, SubClass,

ProgIf, IntPin).

bar(addr(Bus, Dev, Fun),

BARNr, Base, Size,

mem | io,

prefetchable | non-prefetchable,

64 | 32).

These facts encode all information needed to run the PCIe configuration al-
gorithm. A root bridge is identified by its PCIe configuration address (bus,
device and function number), the range (minimum and maximum) of bus
numbers of its children, and its assigned physical memory region. Bridges
and devices are identified by their address, and carry standard identifiers
for their vendor, device ID, device class and subclass, and programming
interface. A bridge also includes the bus number of its secondary bus, and
a device includes the interrupt pin which it will raise (which is used by
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the interrupt allocation routines described in section 6.4). Finally, for each
BAR it stores its base address (which may have been previously assigned
by firmware), required size, region type, and whether it is a 64-bit or 32-bit
BAR.

After creating the facts, the PCIe driver causes the SKB to run the con-
figuration algorithm to compute a valid allocation (step 3 in figure 6.3).
The initialization algorithm is described in the following section. Its out-
put is a list of addresses for every device BAR and every bridge, which
can be directly programmed into the corresponding registers by the driver.
For example:

buselement(device, addr(6,0,0), 0, 0xC0000000, 0xD0000000,

0x10000000, mem, prefetchable, pcie, 64),

buselement(bridge, addr(0,15,0), secondary(6), 0xB0100000,

0xD0000000, 0x1FF00000, mem, prefetchable, pcie, 0).

In this example, the 64-bit PCIe device at bus 6, device 0, function 0 re-
quests a physical address range of 256MB in prefetchable memory space
for BAR 0. The base allocated to the device is 0xC0000000 and the limit
will thus be 0xD0000000. The bridge at which the device is attached
has a base of 0xB0100000 and a limit of 0xD0000000 in the prefetchable
memory space, clearly including this device (along with others, not shown
here).

In step 4, the PCIe driver reads the result back from the SKB. It takes
the addresses and BAR numbers as well as bridge base and limit values
from the output, and programs the specified registers (step 5). While re-
programming devices and bridges, they are disabled in order to prevent
transient address conflicts.

Once reprogramming is complete, the bus is fully configured and de-
vice drivers can be started. Additionally, the allocation result is stored in
the SKB for later use. Whenever a device driver for a specific device gets
started, it needs to know the base addresses assigned to the BARs of this
device. This can easily be queried from the SKB. Hotplugging (see Sec-
tion 6.3.4) is another reason to store the result for later use in incremental
allocation of new devices.
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6.3.2 Formulation in CLP

The description below shows how to turn the configuration algorithm into
constraint logic. The rules describe how to allocate prefetchable and non-
prefetchable memory regions. The allocation of I/O space proceeds the
same way. The only difference is the alignment requirement of I/O bridge
windows, which gets passed to the code by a parameter.

Following the description in section 3.8.3, the first step is to convert
the facts generated by the PCIe driver to a suitable data structure, and
declare the necessary constraint variables. The data structure used is a
tree mirroring the hardware topology, whose inner nodes correspond to
bridges, and leaf nodes to device BARs or other unpopulated bridges. The
constraints are then naturally expressible through a recursive tree traver-
sal. The variables of the CLP program are the base address, limit and size
of every bridge and device BAR, and the relationship between them may
be expressed by the constraint Limit $= Base + Size, which the algo-
rithm later applies. At a high-level, the allocation algorithm performs the
following steps for each PCIe root bridge:

1. Convert bridge and device facts for the given root bridge to a list
of buselement terms, while declaring constraint variables for the
base address, limit and size of each element.

2. Construct a tree of buselement terms, mirroring the PCIe tree.

3. Recursively walk the tree, constraining the base, limit and size vari-
ables according to the PCIe configuration rules and quirks.

4. Convert the tree back to a list of elements.

5. Invoke the ECLiPSe constraint solver to compute a solution for all
base, limit and size variables satisfying the constraints.

The core logic of the algorithm resides in step 3 above. The implemen-
tation is a direct translation of the rules described in section 6.2.2 to con-
straint logic, as described in the following sections.
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Bridge windows

Rule 1 states that all bridge windows must include all address regions de-
coded by devices and bridges attached to the secondary bus. This means
that the bridge’s memory and I/O base addresses must be smaller or equal
to the smallest base of any bridge or device on the secondary bus, and the
corresponding limits must be greater than or equal to the highest address
used by any device or bridge on the secondary bus.

Although at this stage there are not yet concrete values for the relevant
base and limit variables, CLP allows constraining them using a recursive
walk of the tree, implemented as shown below.
Note that a tree is expressed as t(Root,Children), where Root is the
root node, and Children is a (possibly empty) list of child trees – ECLiPSe

uses conventional Prolog syntax whereby identifiers starting with an up-
percase character (e.g. Node) denote free variables, and all others de-
note constants. Also note the ECLiPSe operations ic global:sumlist,
ic:minlist, and ic:maxlist, which operate on lists of constraint vari-
ables that may not have a concrete value assigned, allow complex con-
straints to be introduced between them.

setrange(Tree,SubTreeSize,SubTreeMin,SubTreeMax) :-

% match Tree into current node and list of children

t(Node,Children) = Tree,

% match node to get its base, limit and size variables

buselement(_,_,_,Base,Limit,Size,_,_,_,_) = Node,

% recursively collect lists of sizes, minimum and

% maximum addresses for children of this node

( foreach(El,Children),

foreach(Sz,SizeList),

foreach(Mi,MinList),

foreach(Ma,MaxList)

do

setrange(El,Sz,Mi,Ma)

),
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% compute sum of children’s sizes as SizeSum

ic_global:sumlist(SizeList,SizeSum),

% constrain the size of this node >= SizeSum

Size $>= SizeSum,

% if there are any children...

( not Children=[] ->

% determine min base and max limit of children

ic:minlist(MinList,Min),

ic:maxlist(MaxList,Max),

% constrain this node’s base and limit accordingly

Min $>= Base,

Max $=< Limit

; true

),

% constrain this node’s limit

Limit $= Base + Size,

% output values

SubTreeSize $= Size,

SubTreeMin $= Base,

SubTreeMax $= Limit.

setrange([],0,_,_). % base case of recursion

Non-overlap of bridges and devices

Rule 2 states that siblings must not overlap at any level of the tree. In
other words, all regions allocated to bridges and devices at the same level
must be disjunctive. The following goal ensures this by making use of the
disjunctive constraint, originally intended for task scheduling, which
ensures that regions specified as lists of base addresses and sizes do not
overlap:
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% convenience functions / accessors

root(t(R,_),R).

base(buselement(_,_,_,Base,_,_,_,_,_,_),Base).

size(buselement(_,_,_,_,_,Size,_,_,_,_),Size).

nonoverlap(Tree) :-

% collect direct children of this node in ChildList

t(_ ,Children) = Tree,

maplist(root,Children,ChildList),

% if there are children...

( not ChildList=[] ->

% determine base and size of each child

maplist(base,ChildList,Bases),

maplist(size,ChildList,Sizes),

% constrain the regions they define not to overlap

disjunctive(Bases,Sizes)

; true

),

% recurse on all children

( foreach(El, Children) do nonoverlap(El) ).

Non-overlap of prefetchable/non-prefetchable memory

Rule 3 requires that prefetchable and non-prefetchable regions do not over-
lap. The two regions do not need to be contiguous. The implementation
inserts an artificial level in the top of the tree containing two separate
bridges, one with all prefetchable memory ranges and another with all
non-prefetchable memory ranges of the tree. This gives some freedom to
the solver, because the order of the two regions is not explicitly specified
by the allocation code, and allows the previously-described logic to op-
erate independently of memory prefetchability. Treating the two regions
as completely separate trees causes the prefetchable and non-prefetchable
window of every bridge to be at completely different locations, which is
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fine. I/O regions do not need to be considered here, because the I/O space
is physically different form the memory space and cannot overlap with it.

Alignment constraints

Rules 4, 5 and 6 require a specific alignment for devices and bridges. The
following rule constrains the alignment of each element, using natural
alignment for device BARs, and a fixed alignment for bridge windows
(1MB in the case of memory regions and 4kB in the case of I/O).

naturally_aligned(Tree, BridgeAlignment, LMem, HMem) :-

t(Node,Children) = Tree,

% determine required alignment for bridge or device BAR

( buselement(device,_,_,Base,_,Size,_,_,_,_) = Node ->

Alignment is Size; % natural alignment

buselement(bridge,_,_,Base,_,_,_,_,_,_) = Node ->

Alignment is BridgeAlignment % from argument

),

% constrain Base mod Alignment = 0
suspend(mod(Base, Alignment, 0), 0, Base->inst),

% recurse on children

( foreach(El, Children),

param(BridgeAlignment), param(LMem), param(HMem)

do naturally_aligned(El, BridgeAlignment, LMem, HMem)

).
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Reserved regions

Rule 7 requires that reserved memory regions are not allocated to PCIe de-
vices. In other words, memory regions allocated to PCIe devices should al-
ways be disjunctive with any reserved region. The following goal ensures
this requirement, by recursively processing a list of bus elements against a
list of reserved memory ranges, specified as range(Base,Size) terms:

% recursive stopping case

not_overlap_mem_ranges([], _).

% bridges may overlap: no special treatment

not_overlap_mem_ranges(

[buselement(bridge,_,_,_,_,_,_,_,_,_)|T], MemRanges) :-

not_overlap_mem_ranges(T, MemRanges).

% device BARs match this pattern

not_overlap_mem_ranges([H|T], MemRanges) :-

% for each reserved memory range...

( foreach(range(RBase,RSize),MemRanges), param(H)

do

% match base and size variable from bus element

buselement(device,_,_,Base,_,Size,_,_,_,_) = H,

% constrain this BAR not to overlap with it

disjunctive([Base,RBase], [Size,RSize])

),

% recurse on list tail

not_overlap_mem_ranges(T, MemRanges).
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Fixed-location devices

The allocation algorithm must also avoid moving various initialized boot
devices, as formulated in rule 8. The following goal shows one such exam-
ple: given a device class (specified by its class, subclass and programming
interface identifiers) that should not be moved, it constrains the possible
choice of the base address to the one value which is its initial allocation.

keep_orig_addr([], _, _, _).

keep_orig_addr([H|T], Class, SubClass, ProgIf) :-

( % if this is a device BAR...

buselement(device,Addr,BAR,Base,_,_,_,_,_,_) = H,

% and its device is in the required class...

device(_,Addr,_,_,Class, SubClass, ProgIf,_),

% lookup the original base address of the BAR

bar(Addr,BAR,OrigBase,_,_,_,_) ->

% constrain the Base to equal its original value

Base $= OrigBase

; true

),

% recurse on remaining devices

keep_orig_addr(T, Class, SubClass, ProgIf).

6.3.3 Quirks

Declarative logic programming provides an elegant solution to the prob-
lem of quirks. Quirks require the allocation algorithm to correct wrong
information as well as apply possible extra constraints to workaround mis-
behaving devices. In CLP it is easy to define a database of facts for devices
needing special treatment. Those facts are implicitly matched against the
data structure before the configuration algorithm runs, causing incorrect
information to be corrected, and additional constraints on the allocation to
be defined, without changing any of the core logic of the algorithm.

Rule 11 requires that non-PCIe devices appearing as a BAR of a regu-
lar PCIe device or bridge are treated like PCIe devices with a fixed address
requirement. As an example, on some machines, an IOAPIC appears as a
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BAR of a PCIe device. If this is the case, the IOAPIC decodes the base
address assigned to the BAR rather than directly using one of the valid
predefined base addresses for IOAPICs. In this case, the allocation code
cannot move the BAR, even if the IOAPIC is not a PCIe device. This con-
flicts with the core logic of the algorithm, which avoids using all regions
assigned to IOAPICs. In order to handle this quirk, a slight modification of
the core logic of the algorithm is necessary such that it only avoids using
address regions assigned to IOAPICs if they do not appear as a BAR. Ad-
ditionally the algorithm has to apply the following extra constraint, which
ensures that IOAPICs appearing as a BAR keep their original base address
by calling keep orig addr on the specific bus, device and function num-
ber of the device on which the IOAPIC claims to be.

keep_ioapic_bars(_, []).

keep_ioapic_bars(Buselements, [H|IOAPICList]) :-

( % if there is a BAR with the same base as an IOAPIC,

% then do not move it

range(B, _) = H,

bar(addr(Bus, Dev, Fun), _, OrigBase, _, _, _, _),

OrigBase =:= B ->

keep_orig_addr(Buselements, _, _, _, Bus, Dev, Fun);

true

),

keep_ioapic_bars(Buselements, IOAPICList).

6.3.4 Device hotplug
In principle, the allocation of resources for hotplugged devices can be han-
dled simply by adding facts for the new device and its BARs, and then
re-running the allocation algorithm. However, this may cause all existing
address assignments to change (excluding those whose location is fixed,
as described in section 6.3.2), and is thus undesirable due to the perfor-
mance impact of interrupting running device drivers. A more incremental
approach is desirable.

With PCI Express it is possible to query bridges for hotplug capabili-
ties (i.e., whether or not they have slots to hotplug a device)[25]. To avoid
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moving as many devices and bridges as possible, the initial configuration
should leave as many gaps as possible under bridges with hotplug capa-
bilities. This could be implemented as an optimization function that max-
imizes the free space under hotplug-capable bridges. However, an opti-
mization function considers all possible solutions and takes the one which
maximizes the free space. This would lead to a complete tree permutation
and is therefore too complex and not feasible in a reasonable time.

A more tractable way of creating gaps under hotplug-capable bridges
is adding artificial devices under those bridges while computing the first
allocation. Artificial devices have regular device() and bar() entries
with the vendor identifier set to 0xffff to mark the devices as artificial.
There will never be a device with this vendor identifier, since 0xffff
means at the register level that no device exists at this bus, device and
function number. The bus part of the device address is set to the secondary
bus number of the bridge with hotplug capabilities. This ensures that the
artificial device belongs to this bridge. The device number has to be unique
under every bus, but can otherwise be an arbitrary number, which does not
yet exist on the bus, for artificial devices. Since it is not known in advance,
whether the device will have BARs in the prefetchable, non-prefetchable
or I/O space, it is necessary to create one BAR in each of the three spaces.
The following example shows an artificial device under a hotplug-capable
bridge:

% the bridge with a hotplug-capable slot under it

bridge(pcie, addr(3, 0, 0), 0x1033, 0x125, 6, 4, 0,

secondary(4)).

% artificial device with vendor set to 0xffff and all

% other fields to 0

device(pcie, addr(4, 3, 0), 0xffff, 0, 0, 0, 0, 0).

% three small BARs, one in each space

bar(addr(4, 3, 0), 0, 0, 8192, mem, prefetchable, 64).

bar(addr(4, 3, 0), 0, 0, 8192, mem, non-prefetchable, 32).

bar(addr(4, 3, 0), 0, 0, 256, io, non-prefetchable, 32).

The space occupied by artificial devices can later be used for real devices
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hotplugged under a bridge. When a device is hotplugged it is straight-
forward to check whether there is enough free space available under the
bridge. If this is the case, resources can directly be allocated. The alloca-
tion under this bridge needs to follow the same rules as the first allocation,
for example, the address has to meet the alignment requirement of the
newly hotplugged device. Nevertheless, as long as the gap is large enough
a simplified, incremental algorithm for local resource allocation can apply
the constraints to the newly hotplugged device.

However, since the physical address size requirements of hotplugged
devices are not known in advance, it may still be the case that there is
insufficient free address space under a bridge. In this case the allocation
algorithm tries to extend the local search by moving the bridge, and in
the worst case, a recomputation of the complete allocation is necessary.
Similarly, it is not known in advance whether a newly hotplugged device
will have special requirements such as a fixed address assignment or other
hardware quirks. In these cases a complete reallocation may be necessary.

Adding artificial devices to the PCIe tree before computing the first
allocation can be handled well by the allocation algorithm and it is com-
putationally less complex than an optimization problem. Figure 6.4 shows
that the CLP solution can deal with an almost completely filled physi-
cal address region. This means that the available space can almost be
filled completely with artificial devices to provide space for later hotplugs.
When creating artificial devices, the first step is to compute the sum of
the address size requirements of the real devices and to fill the available
address regions for PCIe with small artificial devices almost completely.
With CLP this is particularly easy, because the artificial devices are placed
around the real ones. Moreover, the CLP solution is well-placed to han-
dle complex reconfigurations that may be required by device hotplug, as it
specifies the complete set of feasible configurations which will be explored
by the solver. Section 6.5.5 presents the results of a benchmark showing
the theoretical limits of the CLP approach in handling device hotplugs, in
comparison to a traditional postorder traversal.
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6.4 Interrupt allocation
This section now describes the closely-related problem of interrupt alloca-
tion, which is also implemented in CLP and also evaluated in section 6.5.

6.4.1 Problem overview
Interrupts are another important resource that must to be allocated to de-
vices by the OS. Most PCI devices can raise one or more interrupts. To
avoid shared interrupt handlers, the OS should try to allocate unique inter-
rupt vectors to every device. Modern systems, and some modern devices,
support message signaled interrupts (MSIs). These map interrupts into the
physical address space, and therefore the only requirement is choosing a
different interrupt address for every device. However many systems and
many PCI devices do not yet support MSIs, and thus, correctly and effi-
ciently configuring PCI interrupt allocation remains a critical OS task.

Each PCI device signals interrupts by asserting one of up to four avail-
able interrupt lines (INTA, INTB, INTC and INTD, represented in the CLP
code as the integers 0–3). On PC-based platforms, these signals are routed
via PCI bridges and configurable link devices to global system interrupt
numbers (GSIs). This routing is encoded in and configured via platform
firmware, using a set of ACPI tables and functions[59]. Starting from a
given device and interrupt pin, the mapping is determined as follows:

1. Consult the ACPI interrupt routing tables for the current bus, device
and pin number. If there is a mapping for the given pin:

(a) If the entry names a GSI, the interrupt line is fixed.

(b) Otherwise, the entry names a link device, and the interrupt is
selectable from set of GSIs.

2. Otherwise, compute the new interrupt pin on the parent bus, using
the formula (device number + pin) mod 4, and repeat.

The goal of the interrupt allocation code is to assign unique interrupt vec-
tors to every device. Interrupt sharing is to be avoided wherever possible[88].
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It can severely impact performance, since the drivers for devices that share
an interrupt must essentially poll their devices to determine if the interrupt
is for them. Furthermore, many device drivers do not handle shared inter-
rupts correctly at all. As well as avoiding sharing among PCI devices, spe-
cific GSIs are also assigned to legacy (non-PCI) devices and other system
devices This should also be avoided by the allocation code. The summary
of the requirements for the interrupt configuration problem is as follows:

1. Assign and configure a GSI (possibly translated by bridges and link
devices) for every enabled PCI device,

2. Ensure that all allocated GSIs are unique.

3. Avoid reassigning legacy preallocated GSIs.

This problem is not as complex as PCIe address allocation, and there-
fore less troublesome to implement in C. However, there are still some
benefits from using CLP: storing and querying information about possi-
ble GSIs and prototyping the algorithm in CLP is highly convenient, the
resulting algorithm is portable across different platforms, and the imple-
mentation is concise – ensuring that allocated GSIs are globally unique can
easily be done using the built-in ECLiPSe goal alldifferent (see 6.4.2).
These are good reasons to implement interrupt allocation for Barrelfish in
the SKB.

6.4.2 Solution in CLP
At start-up, the PCI and ACPI drivers populate the system knowledge base
with a fact for every PCI interrupt routing table entry, mapping a device
address and interrupt pin to a source, using the schema:

prt(addr(Bus, Dev, _), Pin, pir(Pir) | gsi(Gsi)).

These facts include addresses of PCI devices without function number,
because the same mapping applies for all functions on a multi-function
device. The interrupt source is either a name (ACPI object path) identi-
fying the interrupt link device or a direct GSI number, indicating that this
interrupt’s allocation is fixed.
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For each link device, pir facts are added describing the possible GSIs
that may be selected for a given device:

pir(Pir, GSI).

In this relation, Pir defines the link device name, and GSI one of the
selectable GSIs for this device (so each link device has multiple facts, one
for each configuration).

The CLP code operates on these facts, and the PCI device facts de-
scribed in the previous section. At the top-level, it determines the inter-
rupt pin used by a specific device, and passes it to assignirq to allocate
a unique GSI:

assigndeviceirq(Addr) :-

device(_, Addr, _, _, _, _, _, Pin),

% require a valid Pin

Pin >= 0 and Pin < 4,

( % check for an exising allocation

assignedGsi(Addr, Pin, Gsi),

usedGsi(Gsi, Pir)

; % otherwise assign a new GSI

assignirq(Pin, Addr, Pir, Gsi),

assert(assignedGsi(Addr, Pin, Gsi))

),

printf("%s %d\n", [Pir, Gsi]).

assignirq takes the PCI address and interrupt pin for the device as in-
puts, and chooses a possible GSI for the device. It uses findgsi (de-
scribed below) to determine the available GSIs for the device, and the
alldifferent goal to avoid overlaps:
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assignirq(Pin, Addr, Pir, Gsi) :-

% determine usable GSIs for this device

findgsi(Pin, Addr, Gsi, Pir),

( % flag value for a fixed GSI (i.e. meaningless Pir)

Pir = fixedGsi

;

% don’t change a previously-configured link device

setPir(Pir, _) -> setPir(Pir, Gsi)

;

true

),

% find all GSIs currently in use

findall(X, usedGsi(X,_), AllGsis),

% constrain GSIs not to overlap

ic:alldifferent([Gsi|AllGsis]),

% allocate one of the possible GSIs

indomain(Gsi),

% store settings for future reference

( Pir = fixedGsi ; assert(setPir(Pir,Gsi)) ),

assert(usedGsi(Gsi,Pir)).
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Finally, the following CLP function matches the device’s address and in-
terrupt pin with the prt and pir facts to find the possible GSIs (multiple
solutions may be found). If no match is found, it recursively performs
bridge swizzling until a routing table entry matches (which is always true
at the root bridge).

findgsi(Pin, Addr, Gsi, Pir) :-

( % lookup routing table to see if we have an entry

prt(Addr, Pin, PrtEntry)

;

% if not, compute standard swizzle through bridge

Addr = addr(Bus, Device, _),

NewPin is (Device + Pin) mod 4,

% recurse, looking up mapping for the bridge itself

bridge(_, BridgeAddr, _, _, _, _, _, secondary(Bus)),

findgsi(NewPin, BridgeAddr, Gsi, Pir)

),

( % is this a fixed GSI, or a link device?

PrtEntry = gsi(Gsi),

Pir = fixedGsi

;

PrtEntry = pir(Pir),

pir(Pir, Gsi)

).

6.5 Evaluation

The evaluation of the PCIe allocation algorithm is mainly in terms of code
complexity and efficiency of resultant solutions. Execution time is also an
important metric, but not the main point of this approach. Obviously, some
of the evaluation necessarily remains subjective in its comparison with cur-
rent approaches, not least because code in this approach is factored rather
differently from traditional approaches and offers different functionality
to, for example, PC-based Linux.
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Devices BARs Bridges Runtime (ms)
sys1 7 11 12 2.0
sys2 13 20 6 14.7
sys3 13 20 6 14.4
sys4 14 22 6 36.4
sys5 12 18 5 10.0
sys6 7 9 6 19.0
sys7 9 14 6 22.2
sys8 15 25 4 6.7
sys9 15 25 4 31.2

Table 6.2: System complexity and execution times for the PCI configura-
tion algorithm

6.5.1 Test platforms

I evaluated the PCIe configuration and interrupt allocation algorithms on
nine different x86 PC and server systems, with a mixture of built-in and
expansion devices including network, storage and graphics cards installed.
I refer to these as sys1 through sys9, and show the number of PCIe ele-
ments they include in Table 6.2. All systems have two PCIe root bridges
with the exception of sys1, which has one. Here I show the totals for the
whole system, as the algorithm allocates resources to all PCIe trees in a
single invocation.

All of these systems support USB keyboards in the BIOS, and thus
the system initializes the USB controller in firmware at boot time. Con-
sequently, the allocation algorithm ensures this fixed device requirement
using the keep orig addr constraint from section 6.3.2 to prevent the
USB controllers from being reprogrammed, and also avoid any memory
regions marked as reserved by ACPI or in use by IOAPIC devices. The
computation does not include handling other quirks, since the test plat-
forms do not exhibit them and consequently do not exercise that part of
the CLP code. The implementation is successful in configuring all PCI
buses and devices on all the test systems.
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6.5.2 Performance

I measured the time for PCI configuration on the test platforms, and show
the results in Table 6.2. This time is for the CLP algorithm and does
not include the initial bus walk, nor programming of device registers. As
discussed in section 6.3, these remain in C as part of the PCIe driver, and
the CLP time dominates the overall runtime.

Compared to the performance of a hard-coded allocation in C, which
in existing OSs typically requires less than a millisecond, the CLP solution
is substantially slower, but the additional overhead of 10–30ms is only in-
curred at boot time or after a hotplug event, and so is arguably insignificant
to the end user. This computation can be run in parallel with other tasks,
and since the PCIe configuration changes rarely, the computed configura-
tion can be cached and re-applied during the next boot process. In these
cases, no additional overhead is added to the boot time.

6.5.3 Code size

This section compares the complexity, measured in lines of code (LOC),
of the CLP-based approach to the comparable portions of the Linux x86
PCI driver. Such a comparison can never be precise, and must be preceded
by several qualifications.

First, in both cases I consider the code related to PCI resource con-
figuration, interrupt allocation, PCI device discovery, maintenance of the
data structures representing the PCI bus hierarchy, and the corresponding
hardware access mechanisms. Second, I exclude from the Linux figures
some PCI-related mechanisms (such as the legacy PCI BIOS interface)
that are currently unsupported by the CLP solution. Third, since the PCIe
driver in Barrelfish currently only implements two PCI quirks, the hard-
ware quirk-handling code is excluded, but handling of other special cases
is retained. Fourth, the functionality offered by this solution and the Linux
code is different: Linux implements the solution that attempts to fix up the
initial BIOS configuration, whereas the CLP code does a full allocation of
addresses. Finally, to emphasize it, the goal is to reduce the complexity of
the source code and therefore the number of source lines of code, rather
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C LOC CLP LOC
Register access 235
Data structure 817 31
Algorithm 224
ACPI 360
Interrupts 660 28
Miscellaneous 109
Total 2181 283

Table 6.3: Lines of code in PCI configuration and interrupt allocation

than the number of generated machine statements.
Table 6.3 summarizes the results for the CLP-based solution and ta-

ble 6.4 summarizes them for Linux. The relevant Linux code is located in
the kernel in drivers/pci. Overall, this approach uses 2464 lines of code,
compared to 5210 for the pure C-based Linux version.

Breaking this down, the PCIe driver in Barrelfish uses much less code
for reading and writing registers, as the hardware access is regular and in-
dependent of allocation. Building and manipulating data structures is also
simpler: representing lists and trees is highly concise in ECLiPSe, and al-
lows building much simpler structures in the C domain, resulting in about
half the code size. The number of lines of code for ACPI is higher in Bar-
relfish, since it explicitly handles ACPI reserved regions, whereas Linux
relies on the BIOS initialization for this. Code for interrupt assignment is
about the same size. Finally, the “core” of the configuration code (in as
much as it can be isolated in the Linux case) is 224 lines of Prolog versus
1243 lines of C.

The largest class of code in both implementations is used for main-
taining data structures. This is because PCI data must be queried from
either ACPI or directly from the hardware, transformed to a meaningful
internal representation, and added to a structure. Finally, the configuration
proceeds by traversing this structure, accessing and mutating it. The cor-
responding data structure in the CLP implementation consists mostly of
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C LOC
Register access 842
Data structure 2079
Resource management 1243
ACPI 238
Interrupts 718
Miscellaneous 90
Total 5210

Table 6.4: Lines of code for equivalent functionality in Linux 3.1.6

ECLiPSe facts which are generated by C but traversed/accessed entirely in
CLP, and thus require fewer lines of code than Linux. Despite being large
in size in both systems, such code is not the most complex in its logic.

The PCI configuration algorithm uses 224 lines of CLP code in Bar-
relfish’s PCIe driver implementation. This produces a correct and com-
plete allocation, while correctly handling special constraints such as avoid-
ing reserved regions and preserving certain device locations. In compar-
ison, the Linux C implementation uses more lines of code for less func-
tionality (it does not perform a full bus configuration).

Besides the usual benefits arising from a smaller, simpler codebase in
terms of source lines of code, the separation of concerns between low-level
hardware-specific device access code and a high-level declarative resource
configuration algorithm enhances the system’s maintainability and adapt-
ability to changing hardware requirements. Complex device- and system-
specific constraints, such as quirks, can be incorporated without changing
the device access code or core algorithm, and it can easily be ported to
other PCI-based platforms.

6.5.4 Handling quirks

An important goal of using a declarative algorithm is the maintainability
of the code as well as simplifying of adding new special cases or quirks.
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Special case Goal Part CLP LOC C LOC
No re-assignment keep_orig_addr() impl. - -

call 1 -
IOAPIC as BAR keep_ioapic_bars() impl. 10 -

call 1 -
get IOAPIC list 3 -

Total 15 -

Table 6.5: Additional lines of code to handle additional special cases

These properties can best be evaluated by showing the number of lines of
code which must change when adding a new special case.

To take one example, consider a new PCIe device that does not sup-
port the re-assignment of a new address. The implementation already con-
tains the goal keep orig addr(), which ensures that the device retains
its original address and therefore no re-assignment will happen. It is suf-
ficient to call this goal on the newly-found device, and this only requires
one additional line of CLP code to specify the case.

A second example was encountered in the course of writing the PCIe
driver, and has already been mentioned in section 6.3.3. One system has
a special IOAPIC that appears as a BAR, even though it is not a PCI de-
vice. In this case, the address in the BAR must not change during the
configuration process. The implementation did not contain any goal to
handle this special case, and so I had to implement it from scratch. The
small goal keep ioapic bars() shown in section 6.3.3 completely han-
dles this case, making use of the already available keep orig addr().
The implementation only adds ten lines of CLP code. An additional line is
necessary to call the goal and another three lines are necessary to prepare
the list of IOAPICs.

Table 6.5 summarizes the additional lines of code necessary to handle
these two additional special cases. In CLP handling them is straightfor-
ward, because the base variables can be constrained before having actual
addresses assigned. As the table shows, the C code did not need to be
changed at all.
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6.5.5 Postorder traversal comparison
To evaluate the quality of the solutions found, I investigated how they
compare to the style of simple postorder traversal used in current operat-
ing systems. When allocating resources to a device tree where the size
of each device is known in advance, one might expect this approach to
be sufficient. I first describe why that is not the case, and then show, ex-
perimentally, the advantage of a declarative CLP solution against such a
traversal.

Starting with the base address given by the root bridge, such an al-
gorithm traverses down the left-most branch of the tree first, assigning
the current base address to each bridge and finally the left-most leaf de-
vice, while satisfying alignment constraints. For each device allocation,
the device size is added to the base value, plus any padding required for
alignment. The algorithm next traverses all child devices of the bridge, be-
fore moving up the tree to the next-upper parent bridge, and updating the
bridge’s limit register in the process, before continuing with the remaining
devices and bridges.

Such an algorithm can be simply described and implemented. It en-
sures that all bridges are allocated a window, which includes their children,
and that alignment constraints are satisfied. However, the algorithm is in-
sufficient for PCIe configuration for two reasons:

1. It fails to include constraints that require keeping devices at a fixed
address. This requires all parent bridges to decode the fixed de-
vice window. Because all parent bridges have to decode a fixed
address, all children of every bridge decoding a fixed address have
to be placed close to a predetermined address region. This cannot
be easily expressed in a postorder traversal of the device tree.

2. Satisfying alignment constraints leads to potentially large amounts
of address space wasted in padding, thus preventing a successful
configuration when not all devices fit into the root bridge’s address
range.

To learn how the CLP-based algorithm behaves at extreme cases, where
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Figure 6.4: Address space utilization of CLP algorithm vs. simple pos-
torder traversal as devices and bridges are added to a simulated system.
The CLP algorithm reorders devices as needed, exactly following the De-
viceSum line, which shows the lower bound. The postorder traversal,
which sorts the devices according to size, cannot fit the PCI tree into the
given root bridge window. Vertical lines indicate when a new bridge is
added; the horizontal line indicates the maximum size of the root bridge
window.

lots of resources are consumed by additional devices, I stressed the config-
uration algorithm in an offline experiment by adding progressively more
devices and bridges to a simulated PCIe system. Starting with zero de-
vices and bridges, I added either a device or a bridge on every round and
measured the consumed resources by the configuration derived by the al-
gorithm. This scenario is not purely artificial, because it simulates what
can happen when devices are hotplugged. I compared the CLP-based algo-
rithm with an improved postorder traversal algorithm, which sorts devices
according to their requested size in ascending order. The results are shown
in figure 6.4.

The horizontal line Root size (max) indicates the given root bridge win-
dow size, which must not be exceeded for a successful configuration. The
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vertical lines in the figure indicate where a bridge has been added to the
PCIe tree. The DeviceSum line indicates the sum of the requested size of
all installed devices without padding or alignment constraints; this is the
absolute lower bound of address space utilization. The data points indicate
the address space consumption after having added the next device.

The figure shows that the CLP-based allocation algorithm exactly fol-
lows the device sum. Its constraints give it the freedom to reorder bridges
and devices, so that no address space is wasted for alignment constraints
and a solution can always be found. The best postorder traversal algorithm,
which does not respect fixed device requirements, nevertheless cannot fit
the devices into the given root bridge window beyond 80% utilization, in-
dicating that such a simple approach has limitations in general.

6.6 Summary
The case study presented in this chapter proves that applying a high-level
declarative language to a hardware configuration problem leads to much
simple and cleaner code. Furthermore, it can easily adapt to differences
and special cases found in different platforms. By picking PCIe configura-
tion as a case study and by proving the feasibility of modeling this problem
in CLP, I believe that many other hardware-related problems can be solved
likewise.

PCI address allocation is one of the most complex hardware resource
allocation problems currently found in PCs, because multiple devices are
configured in a single step, and there are many dependencies between de-
vices and bridges, and constraints on the assignment of addresses to groups
of devices under a bridge. One might see it as something of a special case.
Historically, however, hardware complexity has tended only to increase,
with a concomitant increase in software’s responsibility to configure it:
PCI arose as a solution to the increasing complexity of device configura-
tion in earlier, simpler ISA and ISA-PnP systems, which it resolved by
placing a greater configuration burden on platform firmware and system
software.

A similar emerging trend can be observed in the configuration of the
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interconnect between cores, caches, memory and devices as it gains in-
creasing complexity. Previous systems, such as the older Intel frontside
bus architecture, had static interconnects whose architecture was fixed in
hardware. However, current interconnects such as QPI and
HyperTransport[31] are configurable multi-hop point-to-point networks.
Present systems rely on platform firmware to configure these networks
statically at boot time, but one can easily imagine a future where system
software may be able to dynamically reconfigure the interconnect accord-
ing to workload requirements, for which a declarative solution in CLP may
be appropriate.

The experience in building a high-level declarative configuration algo-
rithm for the complex PCIe resource allocation problem in the SKB has
been positive and it is a promising approach for other hardware configura-
tion tasks. The SKB as a reasoning facility, which is already there, greatly
simplifies the decision of implementing configuration and allocation algo-
rithms in CLP.
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Chapter 7

Efficient Multicast
Messaging

In the introduction (section 1.1.2) I argued that the interconnect, which
increasingly resembles a network, has to be treated as such, to provide op-
timal performance. In this chapter I show how a few lines of CLP code
derive a hardware-aware multicast tree along which the messaging mech-
anism forwards messages with low latency and good scalability. I show,
that the forwarding tree, which is used to configure the messaging mech-
anism, adapts to the interconnect topology by only considering high-level
knowledge about the interconnect. The knowledge is derived from infor-
mation gathered at bootup of the operating system. The code does not
assume any information and therefore adapts to any kind of hardware,
even if it is not known in advance. The mechanism of sending messages is
simple, because the policy code, which derives hardware-aware forward-
ing tables, is completely taken out of the actual messaging code. Further,
the CLP code allows concisely expressing an optimal hardware-aware for-
warding algorithm. The evaluation in this chapter shows first, that the code
complexity is low, and second, that the result – the actual forwarding of
a multicast message – has low latency and good scalability, compared to

167
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non-hardware-aware versions.

7.1 Introduction
Manycore operating systems perform operations which need fast global
coordination among cores to ensure consistency. Global coordination in-
volves notifying all participants and waiting for their acknowledgement.
In fact, at a high-level, it is the concept of multicast communication. Mul-
ticast communication notifies all participating nodes and waits for their
reply. An example, which needs global coordination, is keeping page ta-
ble mappings and their access rights consistent among cores. This needs
coordination between all cores, because they map a page individually (this
is explained in more detail in the background section 7.2) and they have to
agree on the access rights of every page.

To ensure that the globally coordinated operations are not limited by
the operating system’s low-level coordination implementation1, the oper-
ating system needs a fast mechanism to inform every participant and to get
their acknowledgements.

Current x86 hardware provides the illusion of shared memory between
all cores. Every core can access every memory address and the intercon-
nect hardware takes care of sending memory reads or memory writes to the
right place. In fact, as explained in section 1.1.2, the interconnect is a net-
work. It translates memory reads and memory writes on remote NUMA
nodes to messages conveying the read or write operation. It sends the
message to the remote memory controller on which it gets applied. Addi-
tionally, the cache-coherence protocol ensures that the cache contents of
all cores is consistent. If one core writes to a memory address, which is in
the cache of several other cores, they all get invalidation messages for this
address. This causes all other cores to load the data from memory again if
they access the same address again.

A naive way of notifying every core about an operation can cause the
interconnect hardware to send many messages over the interconnect, while

1Here it is low-level coordination on the system’s fast-path. It is different from Octopus,
which coordinates processes at a high level.
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a hardware-aware method can minimize the number of messages being
sent. As I show in the evaluation in section 7.5.4, this directly translates
to overall latency and scalability. It is therefore crucial that the operating
system reasons about the interconnect topology and that it adapts its global
coordination mechanism to it.

The two extreme, but simple, ways of sending a request to several
cores are the following: either use one known memory address to write
the request to or use a different memory address for all participating cores
and write the same requests to each of them. In the first case, all par-
ticipating cores poll the same memory address. Whenever the requesting
core writes to the memory address, all cores get an invalidation message
from the cache-coherency protocol and then read the data item again. For
N cores, the data traverses the interconnect N times, scaling linearly with
the number of cores. The result is similar to sequential processing. In the
second case, the requesting core sequentially writes the same request to N
different memory addresses. Again, it scales linearly with the number of
cores.

In this thesis I argue that a certain degree of parallelism hides the over-
all latency and leads to faster and more scalable distributed operations.
Hiding latency behind parallelism is a common technique used in CPUs
and GPUs by pipelining and hardware level threading[19, 42, 43]. In the
context of notifying other cores it means that, after the initiating core has
sent the request, other cores process and possibly forward the message in
parallel. This leads to some sort of message forwarding tree.

The operating system needs to decide how the forwarding tree should
look like. Ideally, it reduces the number of messages being sent over the
interconnect. The operating system therefore needs to reason about the
interconnect and needs to derive a hardware-aware forwarding tree. In this
chapter I show that a few lines of CLP derive a hardware-aware forwarding
tree which leads to low overall multicast latency and good scalability.
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7.2 Background
This section gives the necessary background about multicast messaging
and explains why directly applying algorithms from the distributed field
does not work within a shared-memory machine. To measure the perfor-
mance of the derived multicast tree, the TLB shootdown operation is used
as an example of a real operating system operation, which needs multicast
communication. This section explains what the thesis means by the TLB
shootdown operation.

7.2.1 Multicast messaging
Traditionally, multicast communication is used in networks. Multicast
trees forward messages along the tree and allow parallel processing and
forwarding towards the multicast group. Multicast trees are well studied
in different scenarios in the distributed field[66, 136, 137, 140]. A multi-
cast tree uses point-to-point links between nodes. Nodes work in parallel
which reduces the overall latency. The same technique seems appealing
in an operating system, because it allows cores to work in parallel. As
stated in the introduction above (section 7.1), the two extremes (one mem-
ory address for all the cores or a separate memory address per core) lead
to sequential processing, which is not desirable. Instead, I argue in this
thesis that a multicast tree with some degree of parallelism between the
two extremes leads to low overall latency and good scalability.

Barrelfish has the right structure to explore multicast messaging tech-
niques (see section 2.2) for two reasons. First, it uses explicit messaging to
communicate between cores, instead of shared memory. It knows exactly
when and from which source and to which destination messages traverse
the interconnect. By explicitly knowing that, the problem of sending data
N times over the interconnect for N cores can be avoided. Second, Bar-
relfish provides messaging mechanisms which allow setting-up message
channels between any two cores. The policy code just needs to decide
from where to where to create message channels to forward the multicast
message. According to the result of the policy code, message channels are
created and multicast messages are sent along them. The challenge is to
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derive a suitable multicast tree.
Within a shared-memory system, the multicast tree might be a regular

n-ary tree or an irregular tree of some form. Unlike in distributed systems,
the interconnect between cores does not restrict the tree construction, be-
cause of the shared memory between all cores. There is a lot of freedom to
chose multicast messaging trees, all having a different overall latencies. A
suitable multicast tree therefore depends on knowledge about single-link
latencies, but, as the next paragraphs explain, also on further hardware
knowledge.

Dijkstra’s algorithm, for example, constructs a minimal spanning tree
according to single-link latencies. Within the machine, the operating sys-
tem has a global view over the interconnect network, a requirement for
Dijkstra’s algorithm. Dijkstra’s algorithm optimizes for the shortest paths
from a root node to all other nodes. The fact that the shared memory archi-
tecture basically provides a full mesh network, means that using the direct
link is always shorter than going over another node and adding the two
latencies2. This means that Dijkstra’s algorithm would create a link from
the root node to all other nodes, leading to one of the two extreme cases
described in section 7.1, depending on the implementation of the mecha-
nism. Two options are possible: the root node uses one channel to send
a broadcast message to every other core or the root node uses a separate
channel to every other core and sends individual messages. As explained
in the introduction section 7.1, both versions lead basically to sequential
processing.

To avoid this problem, another approach is necessary to construct a
multicast tree. In addition to considering only network characteristics like
single-link latencies, the multicast tree construction has to exploit hard-
ware topology knowledge as well. To increase parallelism, while keeping
interconnect traffic low, the policy code has to choose inner nodes through
which messages have to go, such that forwarding messages from inner
nodes to children reduces interconnect traffic.

The optimization algorithm depends therefore on two types of knowl-

2This is because the latencies on all single links are similar and adding two links is always
longer than the longest single-link latency.
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edge, both of which are discovered at boot time and stored as platform-
independent high-level facts in the SKB. First, it needs knowledge about
single-link latencies. These depend on the hardware, but can be mea-
sured easily at the start-up of the operating system. Second, it needs
hardware topology information to decide on inner nodes. This informa-
tion can be discovered at boot-up as well. The actual algorithm depends
on the high-level latency and topology facts and remains portable and –
implementation-wise – machine-independent. Section 7.3.2 describes the
implementation of the multicast tree construction in detail.

7.2.2 TLB shootdown
Page table mappings are cached in the translation lookaside buffer (TLB).
Every core has a separate TLB. The TLB is therefore a distributed data
structure, even if the operating system’s kernel is monolithic. On every
memory access, the core considers the page table mapping stored in its
TLB to translate the virtual address to a physical one. Additionally, it
checks the page’s permissions to decide, whether the memory access in-
struction is allowed to proceed. If one core changes the page mapping or
the page’s access rights, it needs to notify all other cores first. These re-
move the cached entry from their TLB and acknowledge the request. The
initiating core needs to wait for their replies. If one of the other cores ac-
cesses the same page again, it is not in its TLB and therefore it loads the
page table entry with the new rights from memory into its TLB. This way
consistency among cores is ensured. For this thesis I refer to the process of
notifying other cores about changed page table mapping by the term TLB
shootdown.

The TLB shootdown operation is one of the simplest, yet important op-
erations of the operating system. Invalidating a single TLB is a fast opera-
tion, taking about 95 to 320 cycles on current x86 64 machines. The com-
plete TLB shootdown operation is a latency-critical operation, because the
initiator needs to wait for all other cores before it can complete the opera-
tion locally.

Every multicore operating system needs a TLB shootdown operation.
Windows and Linux use a known location to store the page manipula-
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tion operation and inter-processor interrupts (IPIs) to notify all other cores
about the newly arrived operation. A core which changes the mapping of
a page writes the operation to the known location and sends an interrupt to
every core which might have a mapping in its TLB. Every core takes the
interrupt. It invalidates its TLB and acknowledges the interrupt by writing
to a shared variable. Finally, the core resumes to user space. While this
has low latency, it can be disruptive. The cost of taking an interrupt is
about 800 cycles.

The TLB shootdown operation is an example that shows the neces-
sity for efficient multicast communication. Therefore, the thesis uses this
example to evaluate the efficiency and scalability of multicast communica-
tion trees that are derived at runtime on a wide range of hardware, which is
not known in advance. The TLB shootdown provides a baseline protocol.
It is simple in the sense that participating CPU drivers always acknowl-
edge it. More involved protocols are general two-phase commit protocols.
They also need multicast messaging, but participating cores might “abort”
an operation. The focus of this thesis is building hardware-aware multicast
trees and therefore does not evaluate different protocols that build on the
basic multicast mechanism.

7.2.3 Summary
This section pointed out the most important reasons for multicast messag-
ing within an operating system. By now it should be clear that a suitable
multicast tree needs latency measurements as well as hardware topology
knowledge and therefore regular tree construction algorithms from the dis-
tributed field cannot be applied directly.

The chapter uses the TLB shootdown operation as an example, because
it needs global coordination, which can be achieved by multicast commu-
nication. Furthermore, it is a common operation in multicore operating
systems.

The next section describes how to build a hardware-topology-aware
multicast messaging tree in an operating system, such that it adapts to the
current underlying hardware and such that it also leads to optimal perfor-
mance when sending multicast messages.
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7.3 Design

This section describes the design of the multicast tree construction algo-
rithm used to achieve a hardware-topology-aware tree. Before explaining
the actual algorithm in section 7.3.2, I explain the most important design
principles in the next section 7.3.1.

7.3.1 Design principles

I derived a number of properties which should be met by the multicast
tree on every possible underlying hardware and summarizes them in the
paragraphs below.

Policy/mechanism separation is one main goal of this thesis. This is
especially important for multicast messaging, because the mechanism of
sending multicast messages is on the system’s critical fast-path. The mul-
ticast mechanism code uses a forwarding table which it just looks up in
order to send the next message. The entries in the forwarding tables define
the next core ID to which a message should be sent to. The policy code in
the SKB derives the values to be inserted in the routing tables of all cores.
If the configuration changes (changes in the environment for some rea-
sons, CPU hotplug, CPU power-save mode), and the multicast tree needs
to be recomputed, the policy code can be invoked again and the results can
be applied to the forwarding tables. While the SKB derives the new tree,
the current entries in the forwarding table remain valid.

Adaptability to hardware is ensured by looking at hardware discovery
data in the SKB and by deriving the forwarding table entries at runtime.
As long as correct hardware information is available, a multicast tree can
be derived. The tree construction code is independent of the number of
CPU packages, number of cores per package or interconnect topology. It
is purely based on facts describing CPU packages and cores and online
measured message latencies.
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Portability and maintainability are further goals of this thesis. As long
as the CPU package description facts can be generated and message laten-
cies can be measured, the multicast algorithm does not need to change at
all. The mechanism of sending multicast messages is based on forwarding
tables and the underlying message channels. The forwarding tables are
independent of the underlying architecture and porting the code does not
involve changing the mechanism. The only two parts of he code which
potentially need to change are the datagathering mechanism to query CPU
packages and the underlying message transportation implementation.

Keeping the code simple improves maintainability and understandabil-
ity. Still, the multicast policy code should derive a reasonably good multi-
cast tree to allow for fast multicast messaging. By using hardware knowl-
edge and by exploiting hardware characteristics gained from this knowl-
edge, the code produces good multicast trees at a low code complexity in
terms of lines of code needed to implement the policy.

7.3.2 Hardware-aware multicast tree
The goal of the multicast tree is to maximize parallelism and minimize
interconnect usage. It is the task of the policy code to find the optimal
point. This is reached, when more parallelism would increase latency due
to congestion on the cache-coherency protocol and more point-to-point
messaging would increase latency due to too much sequential processing.

The cache-coherency protocol on x86 machines is often a broadcast
protocol. Invalidations of cache lines are typically sent to all cores. How-
ever, many modern CPU packages have a shared cache (typically a shared
L3 cache) and appear as a single node regarding the cache-coherency pro-
tocol. The message passing between cores on the same CPU socket re-
mains local in the shared L3 cache and does not involve interconnect trans-
actions. It is preferable, that one core of the package forwards a multicast
message to all other cores on the same package. Only one message should
be sent through the interconnect to notify a remote package. This reduces
the interconnect transactions and therefore the number of effective broad-
cast messages imposed by the hardware.
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In general, the overall latency cannot be computed statically. To find
the optimal multicast tree, all variants would need to be measured (in-
cluding a varying number of children for each node). This is however
not practical at every startup of the OS. Instead, the policy code exploits
the fact, that message passing within the same CPU packages relies on a
shared L3 cache or otherwise fast local communication between cores. It
choses one core per CPU package as the multicast aggregation node. This
core is responsible to forward the message to all cores on the same CPU
package and also to forward the message to the next CPU packages, if
it is not a leaf of the tree. Forwarding messages to the next CPU pack-
ages happens along dedicated point-to-point message channels. The order
of packages, to which the core forwards the message, is defined by the
policy code. The policy code sorts the next level CPU packages by point-
to-point latency between each package and the sending core in decreasing
order. This ensures, that the core forwards the message first to the remote
package with the highest latency. This technique hides the latency and
improves parallelism. While the message with the highest latency is still
in transit, the core spends time to send the message to the next package.
The cost of sending the message plus the smaller latency overlaps with the
first message with higher latency. After sending the message to all remote
packages, the core forwards it also to all other cores on the same package.

Similarly, within a package, the message is sent to all other cores.
Again the latency can be hidden. Local cores start processing the message
in parallel while the messages to the remote CPU packages are in tran-
sit. Because the locally shared cache lines between the aggregation core
and all cores on the same node do not cause invalidation messages on the
interconnect, the second message, within the package, is much cheaper.
As a further optimization, the algorithm takes the NUMA knowledge into
account. It allocates message buffers in the NUMA node of the multicast
aggregation core. The evaluation (section 7.5) in this chapter shows that
this algorithm performs best on big NUMA architectures. The optimal tree
constructed this way is different for every initiating node. Every root node
needs to compute its own multicast tree. At startup time, it invokes the
policy code in the SKB and passes itself as the root of the tree. The SKB
then returns the multicast tree it should use. As long as the hardware does
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not change (due to hotplug for example), the tree can remain as initially
derived. The algorithm can be summarized into the following steps:

1. Choose root node according to argument passed to policy code

2. Choose one core per CPU package as multicast aggregation core

3. Sort multicast aggregation cores by latency to root core in decreas-
ing order

4. Send message to remote cores

5. Send message to local cores

6. All remote cores send message to local cores

7. Process message

8. Send replies to aggregation node

9. The aggregation node waits for replies and sends itself a reply to the
root node

10. Once all replies are received at the root node, it knows that it has
been processed by every core

Figure 7.1 shows a simple four packages quadcore machine on which
a multicast tree over all cores (in fact a broadcast tree) was constructed.
The root node first sends the message to the furthest core (1) and then to
one core of the other CPU packages (2 and 3). Only after sending the
messages to the remote cores, it forwards the message also to all local
cores, first to the one with highest latency (4) and finally to the one with
the second highest latency (5) and then to the closest one (6). In parallel,
all other inner nodes (on the other CPU packages) forward the message to
the local cores, again first to the one with highest latency (4) and finally to
the other ones (5 and 6).

Cores send acknowledgements back along the same tree. Inner nodes
aggregate all acknowledgements. As soon as all acknowledgements arrive,
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Figure 7.1: Multicast tree on a four CPU packages, quadcore machine.

inner nodes send an acknowledgement back to the root node. The multi-
cast operation is done, as soon as the root node received the acknowledge-
ments of all inner nodes.

This algorithm can be translated directly to CLP code based solely
on CPU package knowledge and online latency measurements between
the cores. The next section explains how the algorithm is expressed in
ECLiPSe.

7.4 Implementation

Following the design presented in the previous section, I implemented the
policy code to generate the multicast message tree construction completely
in ECLiPSe CLP in the SKB. Below I explain each rule in detail.
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Main goal

Each core calls the main goal and passes its own core id as parameter
StartCore which will be the root node of the multicast tree for this core.
SendList outputs the list of links to be used to forward the multicast mes-
sages initiated at the root node. The list contains tuples of the form sendto
(SrcCore, DstCore, LinkLatency).

The main goal choses the tree with the lowest cost. It considers differ-
ent trees and uses the built-in minimize/2 goal to chose the tree with the
lowest cost.

% goal to be called.

% Construct a list of sendto/3 goals, sort them by latency

% in decreasing order and

% minimize the value of the longest latency

multicast_tree(StartCore,SendList) :-

minimize(multicast_tree_cost(StartCore, SendList, Cost),

Cost).
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Tree construction

The following rule creates a list of sendto/3 tuples and associates costs
with each link. The costs are computed as RTT values per link. After
sanity checking, the rule creates a list of all available CPU packages. The
first step is creating sendto/3 tuples to all other packages. After that it
creates sendto/3 tuples between the root node of the start package and all
cores which are within the same package. Finally, the sendto/3 tuples get
sorted in decreasing order by RTT.

% constructs the send list starting at StartCore

multicast_tree_cost(StartCore,[SendH|SendList], Cost) :-

multicast_sanity_check,

% determine package of start core

cpu_thread(StartCore, StartPackage, _, _),

% construct list of other packages

findall(X, (cpu_thread(_,X,_,_), X =\= StartPackage), L),

filter(L,PackageList),

% compute possible links to those packages as SendList1

sends(StartCore, PackageList, SendList1),

% compute links from start core to its neighbors

sendNeighbors(StartCore, Neighbors),

append(SendList1, Neighbors, SendList2),

% annotate with RTT of each link

annotate_rtt(SendList2, SendList3),

% sort by decreasing RTT

sort(3, >=, SendList3, [SendH|SendList]),

% determine cost as maximum single-link RTT

sendto(_,_,Cost) = SendH.
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Links to other packages

This rule creates a sendto/3 tuple from the start core to one core of every
available package (except the package of the start core). Starting from
the chosen core per package, the rule creates sendto/3 tuples to all the
cores within the same package as the chosen core by applying the rule
sendNeighbors/2.

% creates a list with sendto(SrcCore, DstCore) to define which

core should send

% to which other core

% sends(+StartCore, +PackageList, -SendsList)

sends(_, [],[]).

sends(StartAPIC_ID, [H|T],[HS|Sends]) :-

% find the lowest APIC ID on the package as APIC ID

findall(X, cpu_thread(X, H, _, _), APICIDs),

sort(APICIDs, [APIC_ID|_]),

% construct a link to it from the start ID

HS = sendto(StartAPIC_ID, APIC_ID),

% recurse on other packages

sends(StartAPIC_ID, T, Sends2),

% find all the cores on the same package as APIC ID, and

add pairs for them

sendNeighbors(APIC_ID, M),

append(Sends2,M,Sends).
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Links to neighbor cores

This rule constructs links between cores on the same package. It retrieves
all APIC\_IDs of the same package and creates a sendto/2 tuple for all of
them.

% construct links to all the neighbors of APIC ID on the

% same package as it

sendNeighbors(APIC_ID, Sends) :-

% find package containing APIC ID

cpu_thread(APIC_ID, Package, _, _),

% construct links to all my neighbors

findall(sendto(APIC_ID,X),

(cpu_thread(X,Package,_,_),X =\= APIC_ID),

Sends).

Compute RTT

This helper function computes the round-trip time (RTT) for each link by
adding the measured one-way latencies of both directions. Measurements
showed that the latencies for both directions on a specific link do not nec-
essarily need to be the same.

% add the rtt number to every sendto tuple

annotate_rtt([],[]).

annotate_rtt([sendto(Src,Dst)|T1],[sendto(Src,Dst,Lat)|T2]) :-

message_rtt(Src,Dst,Lat1,_,_,_),

message_rtt(Dst,Src,Lat2,_,_,_),

Lat is Lat1 + Lat2,

annotate_rtt(T1,T2).

Sanity checks

It is important that all necessary information is available in the SKB before
starting to construct the multicast tree. Therefore, this helper function
checks whether all information is available. If this is not the case, it returns
No., causing the main goal to return this answer to the calling C function.
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% sanity check: Check first that we have all the

% necessary information

multicast_sanity_check :-

is_predicate(nr_running_cores/1),

is_predicate(cpu_thread/4),

is_predicate(message_rtt/6),

nr_running_cores(NrRunningCores),

findall(X,cpu_thread(X,_,_,_),L),

length(L,NrRunningCores),

ExpectedNrRTTMeasurements is

NrRunningCores * (NrRunningCores - 1),

findall(X, message_rtt(X,_,_,_,_,_), L2),

length(L2, ExpectedNrRTTMeasurements).

7.5 Evaluation
While the final result should lead to higher performance of sending multi-
cast messages, it is equally important for this thesis to prove that few lines
of high-level declarative CLP code derives suitable, adaptable policies for
forwarding multicast messages. Furthermore, the thesis shows, that the
code complexity in terms of lines of ECLiPSe code is low. In order to
cover all the mentioned evaluation goals, the evaluation in this section fo-
cuses on three different dimensions:

1. Adaptability to current underlying hardware

2. Code complexity of the ECLiPSe code

3. Performance of sending multicast messages along the constructed
tree

Reducing the code complexity while being automatically adaptive to
the underlying hardware without prior knowledge is one of the most im-
portant goals of this thesis. Obviously, the result of the policy code (the
multicast tree construction) should allow the mechanism of sending multi-
cast messages to be as performant as possible. In the following subsections
I show the evaluations of these three dimensions mentioned above.
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Function class LOCs
Tree construction 40
Helper functions 8
Total 48

Table 7.1: Lines of code to construct the multicast tree

7.5.1 Adaptability
As stated in section 1.1.1, every machine looks different nowadays. This
also means that the multicast tree needs to look different on every machine.
The code must not assume any knowledge about the hardware topology,
but instead, it should use the detailed, discovered hardware information
stored in the SKB.

As we can see from the rules in section 7.4, the rules use the cpu_thread
/4 to learn about cores and packages as well as the message_rtt/6 which
is measured at runtime and provides latency knowledge of the current ma-
chine. None of the rules assume any knowledge in the code. As long as
these two facts are available, the policy code derives a valid multicast tree
which fits on the current underlying hardware.

7.5.2 Code complexity
It is important, that the code complexity is reduced for programmers. Code
complexity is a qualitative metric, expressed by counting the number of
lines of code of the shown rules above, without counting comment lines or
white lines. With a small number of only 48 LOCs I was able to implement
a completely adaptive code which constructs a correct multicast tree on all
of our test machines. Maintaining this code, if necessary, is simple as well.

7.5.3 Execution time
The most important metric resource-wise is the execution time required
to construct the multicast tree per core. The measurements show that the
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execution time is less than 3ms on our test machines. This tree is con-
structed once when the system starts up and can be reused for every mul-
ticast message sent afterwards. The big gain of adaptability and reduced
code complexity compared to the execution time forms a good tradeoff.

7.5.4 Effective multicast performance

The ultimate goal of the multicast tree is reaching high performance of
sending multicast messages in the system. To evaluate the performance,
four different variants of TLB shootdown implementations were compared
in terms of latency. The measurements in figure 7.2 show the multicast
messaging latencies, without actually performing the TLB shootdown lo-
cally, on a 8x4 core AMD Barcelona system3.

The Broadcast protocol uses one single message channel to send TLB
shootdown requests to all CPU cores. Each core polls the same cache
line and waits for changes by the requesting core. On a TLB shootdown
request, each core performs the TLB shootdown and then sends an ac-
knowledgement on an individual message channel back to the requester.
When the requesting core updates the shared cache line, it is invalidated in
all other core’s caches[4, section 7.3]. When N cores are polling the single
cache line and an update of it by the requesting core invalidates it in all N
cores, the data transfers the interconnect N times. The latency therefore
grows linearly with the number of cores.

The Unicast protocol uses a separate message channel between the re-
questing core and every other core. A cache line is therefore only shared
between two cores. The requesting core sends individual TLB shootdown
requests to every single core leading to sequential processing. As the
figure shows, this protocol is better than the broadcast protocol, but still
scales linearly with the number of cores.

The Multicast tree based approach performs much better compared
to the first two approaches. The AMD Barcelona CPU packages have a
shared L3 cache which allows having fast local messaging based on cache

3The experiment was conducted together with Andrew Baumann, Simon Peter and
Akhilesh Singhania.
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Figure 7.2: TLB shootdown latencies of four different implementations.

lines solely shared by cores on the same package. If only cores on the same
package poll a shared cache line, an update sends invalidation messages
only within the CPU packages and not over the complete interconnect.
This makes local broadcast much cheaper and furthermore it allows CPU
packages to work in parallel without sending messages over the intercon-
nect.

Finally, the NUMA-Aware Multicast protocol allocates message buffers
on the aggregation node’s local memory. This protocol performs best as
shown in figure 7.2. Because the SKB easily provides NUMA informa-
tion, the message buffers can be placed easily on the NUMA nodes be-
longing to the aggregation nodes chosen by the multicast tree algorithm.

This experiment shows that with a small effort it is possible to adapt
mechanisms to the current underlying hardware to improve performance
drastically.
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7.6 Summary
Efficient multicast messaging is an important mechanism used to perform
distributed operations within the operating system. The goal is to mini-
mize the waiting time of receiving the acknowledgements of all partici-
pating cores. The multicast forwarding tree should be optimal on every
machine, even if the topology is not known in advance.

With this example I was able to show that a general algorithm can be
implemented with a few lines of code and only based on high-level facts
discovered and stored in the SKB at runtime. The algorithm has low code
complexity in terms of lines of code and is easily maintainable. It does not
assume a priori knowledge, but only uses knowledge gathered at runtime.

The outcome of this algorithm leads to much higher performance of
the mechanism using the algorithm’s values. Because the configuration of
the CPU packages changes rarely, the algorithm itself has to be invoked
rarely as well. The mechanisms rely on a fast lookup in a low-level table
data structure and to not need to wait for a slow policy algorithm. The
clear policy/mechanism separation allows even the system’s fast path to
use a high-level model of the policies in the SKB to derive an optimal
configuration.
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Chapter 8

Global Resource
Management

Managing hardware resources in modern machines is increasingly com-
plex. The examples in the previous two chapters show how complex
hardware can be configured and used efficiently by means of a high-level
declarative language. However, hardware resource management has fur-
ther dimensions, one of which is allocating computation resources to ap-
plications.

This chapter shows how to allocate CPU cores to applications, such
that their requirements on the resources on the current hardware are sat-
isfied. The allocation code creates a global view and matches application
requirements with actual hardware topology knowledge to derive a global
allocation which satisfies all application requirements. A high-level model
of the hardware in CLP significantly reduces the complexity of incorpo-
rating detailed hardware knowledge.

Further, the chapter presents a simple library, which, linked to the ap-
plication, takes care of interacting with the SKB. Through a few function
calls, the application registers hardware requirements. The library takes
care of creating and destroying application threads. A simple example in

189
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this chapter shows how easily the application uses the library.

8.1 Introduction
Modern, heterogeneous, many-core architectures require smart manage-
ment of their resources to yield optimal performance. The smart manage-
ment of the resources of such systems is important to fully utilize their
potential and yield the best throughput of individual applications as well
as the optimal overall system performance and utilization. Nowadays,
applications are programmed against popular interfaces like POSIX, the
Portable Operating System Interface for Unix[132], or Windows but of
late also against the paravirtualized interface (PV). These interfaces are
highly abstract models and hide underlying hardware differences such as,
for example, memory hierarchy, interconnect between cores or the total
number of hardware execution contexts. Additionally to hiding hardware
differences, these interfaces also completely hide internal allocation poli-
cies used by the operating system

Due of this abstract interface, the operating system allocates hardware
resources, such as memory or CPU time, to applications in a best-effort
way. Traditionally, an application requests only a certain amount of re-
sources from the operating system, without specifying any desired re-
source properties in detail. The operating system keeps track of free and
allocated resources, such that on new resource requests it can allocate a
portion from the free resources. It is however not specified by the appli-
cation, which of the free portions would be best for the application. In
this chapter, I argue that applications should in fact not themselves spec-
ify, which part of the free resources they need, but they should specify
what properties the resources should have, such that the operating system
knows which part would be best to allocate. In section 8.3 I show how
applications can specify properties and how they are taken into account by
the allocation code.

For certain applications (e.g., short running applications) it is sufficient
to get the right amount of resources, even if the location of the resource
might not be optimal. However there are applications which not only know
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the necessary amount of resources they need, but also what properties they
would like to have. As an example, many applications perform better, if
memory is allocated in a NUMA-aware manner (an example in this thesis,
which clearly performs better, if the memory is allocated in a NUMA-
aware manner, is the message buffer of the NUMA-aware multicast tree
presented in section 7.5.4).

In general, topology-aware resource management becomes increas-
ingly important to yield the best performance on modern hardware. The
NUMA-aware placement of threads and the memory they access is an im-
portant example. Basic properties, like NUMA-awareness, are derived
implicitly by the operating system. Linux derives the application’s needs
based on limited monitoring[21]. The default policy is to allocate mem-
ory from the NUMA node, which is local to the CPU core on which the
process is executing. The scheduling domains in Linux allow processes
to have affinities with sets of CPU cores and their caches and associated
memory. In this case, the application relies on the scheduler to consider
NUMA-affinity. It is however not always desired, that the NUMA re-
gion of the allocating core is being used. This core might only serve as
a coordinating core of the application, while the memory region might be
accessed heavily by a working core on a different NUMA region. To ac-
count for these cases, memory allocation policies[21] can be created in the
kernel through additional interfaces such as libNUMA in Linux or lgroup
in Solaris to explicitly instruct the kernel about affinities. These interfaces
provide a basic mechanism to let an application chose a certain NUMA
region for future memory allocations.

However, it is difficult for a single application, and in particular for
a developer, to explicitly manage hardware resources for several reasons.
First, the abstracting interfaces of today’s OSs make it difficult to smartly
manage resources at the application level. It quickly becomes difficult for
programmers to decide on a good NUMA region. This property changes
from machine to machine and would therefore need a deep hardware knowl-
edge gathered somehow by the application. As the thesis already men-
tioned in section 1.1, no two machines look the same. They might come
with a different amount of NUMA regions and with a different scheme of
which cores belong to which NUMA regions. Second, interfaces like lib-
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NUMA do not provide any means of incorporating the complete memory
hierarchy including caches. An application can therefore not use these in-
terfaces to allocate two collaborating threads on the same cache and like-
wise it cannot directly avoid false sharing by means of these interfaces.
Third, these interfaces imperatively set affinity of threads to absolute pro-
cessor IDs and memory allocation to an absolute NUMA domain. They
are thus only a local optimization – based on a purely local view – that
might even conflict with other processes running on the same machine.
Several concurrently running applications might decide to allocate mem-
ory on the same NUMA regions while another NUMA region might be
completely empty. As a consequence, these applications most probably
pin threads on a small number of cores rather than distributing them over
several ones. Applications sharing a machine would need to coordinate
their NUMA-affinity but there are no standardized interfaces. Finally, if
every applications decides on its own, the same complexity of trying to
make sense of hardware information and taking decisions is found in ev-
ery application.

The lack of information flow between the application and the oper-
ating system causes this problem of applications trying to optimize on a
given system on their own and with a purely local view. However, if there
were a wider interface between the operating system and the applicaiton,
a global view of resource preferences could be created in the operating
system. It is already the case that the applications know what they need
in terms of resources. Likewise, the operating system already has a deep
hardware knowledge. It learns about hardware through resource discov-
ery at startup. The knowledge not only includes the amount of resources,
but also topology knowledge. In the case of Barrelfish, the SKB contains
a detailed description of available hardware such as RAM or CPU cores.
The only missing part is an extended interface, which allows combining
the two rich pieces of information.

Many proposals exist to improve the information flow between the OS
and the applications running on top, but they are seldom used in practice
because they push a great deal of complexity towards the developer. So
far, the effort of implementing and using them has not paid off because
systems were homogeneous and only had few cores. As hardware is get-
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ting more complex and heterogeneous nowadays, it is worth rethinking the
OS–application interface. The SKB facilitates matching resource property
requirements with actual hardware knowledge. In this thesis I am showing
how an extended interface can be built such that resource needs of appli-
cations can be communicated to the OS. This extended interface provides
a global view over different needs of all applications and allows matching
individual needs with available hardware resources in a coordinated way.
This declarative interface is a radical new approach of unifying resource
needs and available resources.

8.2 Background and related work
This section gives an overview of the most popular application program-
ming interfaces and of existing approaches to overcome the missing infor-
mation flow of current operating system interfaces.

POSIX, the Portable Operating System Interface for Unix[132], is a
highly abstract model and hides underlying hardware differences (e.g.,
memory hierarchy, interconnect between cores, total number of hardware
execution contexts) as well as how the operating system works (e.g., re-
source allocation policies) from the application. It provides the illusion
of a complete, homogeneous machine for one application. Consequently,
POSIX only presents few opportunities to provide information to the OS
(e.g., madvise, which is rarely used). This lack of information flow can
lead to a suboptimal utilization of hardware resources and to lower appli-
cation throughput.

Windows’ API provides applications a wealth of functionality to choose
from[91], including hinting for resource allocation (e.g., NUMA-aware
memory allocation) or scheduler activations[7] like threading[93]. Despite
the broad API there are only few possibilities for applications to provide
feedback to the OS to improve global knowledge and global optimization.

An emerging interface is the paravirtualized interface provided by vir-
tual machine monitors (VMMs). Applications can run directly as domains
on a VMM (e.g., Maxine Virtual Edition[103]) Despite leaving the do-
mains a lot of freedom (e.g., own scheduler, memory management), the
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VMM provides a homogeneous abstraction of the underlying, heteroge-
neous hardware. It cannot globally optimize resource utilization as there
is no information flow between the domains and the VMM. The shortcom-
ings of homogeneous abstraction and lack of information flow in virtual-
ized environments is, for example, tackled by the symbiotic interface[78].
It widens the interface between the VMM and the guests enabling them to
exchange more information.

To overcome the limitations of these interfaces, many ad-hoc fixes
have been implemented. Some problems are worked around in user-space
in every single application. Examples are own memory management in
managed language runtimes such as Java, Haskell, or Prolog and in li-
braries (e.g., OpenSSL), own buffer caches in DBMSs, or thread pin-
ning for better cache utilization [44, 70, 73, 74, 135]. There are also
feedback-oriented improvements in existing systems. Solaris’ preemp-
tion control[126] allows a process to indicate that it is currently holding a
lock and making good progress and thus should not be descheduled. Ap-
ple’s iOS sends “Memory Warnings” to applications asking them to free
up memory[8]. Daemons like VeryNice[60] and the auto nice daemon
(AND)[124] renice processes according to configuration files to ensure
that they get the necessary amount of CPU time but not more than they
need. Some optimizations are potentially dangerous and require emer-
gency functions to keep the system running. With memory overcommit-
ment, for example, the OS assumes that not all processes will concurrently
access the complete allocated virtual memory and it grants more mem-
ory than it actually has. If processes actually use all available memory,
the OS resorts to the out-of-memory (OOM) killer, which kills a random
process. Similarly, the VeryNice[60] daemon and the auto nice daemon
(AND)[124] can renice processes to a much lower priority or even kill
processes if they use too many CPU cycles.

The actors project[1] combines resource reservation with feedback
control. The difference between desired resource reservations and ac-
tual used resources guides the resource allocator to decide how resources
should be allocated to other tasks. The feedback control also allows de-
ciding whether desired resources should fully be granted or whether it is
too much of overprovisioning.
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Many of these solutions are ad-hoc fixes which try to open existing
interfaces to some extent. In the next section I am going to present a more
general approach which derives allocation policies globally. The policies
can be used by the actual allocation mechanisms.

8.3 Model hardware and global allocation
This section explains how policies for global allocation can be derived
such that hardware knowledge is taken into account and application re-
quirements are satisfied. The section explains, how the complexity can be
handled by modeling the global allocation in a CLP program.

The first step to create a global view is to create a high-level model
of the available hardware. This model includes available resources as
well as their topology. Because the SKB already has a deep knowledge
of hardware and its topology, these facts can be used to create the hard-
ware model. The second step is allowing the model to represent applica-
tions which are using the available hardware. Applications should have a
way to register themselves with the SKB. They should be able to upload
requirements on the hardware resources. Based on this information, the
application part of the model can be constructed. The final step is run-
ning a high-level allocation algorithm such that application requirements
are met as much as they can. The algorithm uses decision variables within
the model which finally show the concrete hardware resource allocation
to applications. These steps are explained in more detail in the following
subsections.

8.3.1 Hardware model
The hardware model needs to include as many details as possible. The
topology model in this thesis includes HyperThreads, cores, shared caches
as well as NUMA nodes. The hardware-to-application allocation is mod-
eled as a matrix, where columns are hardware properties and rows rep-
resent tasks. A single column represents a single HyperThread. Addi-
tional facts in the SKB provide the knowledge of which HyperThreads
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Figure 8.1: Matrix used for global allocation

(i.e., which columns) belong to the same core. Similarly, additional facts
about the cache hierarchy provide knowledge of which cores share a cache
and therefore which columns or groups of columns belong together in the
matrix model. Finally, a group of cores share one NUMA node and there-
fore an even larger group of columns belong together in terms of NUMA
sharing.

8.3.2 Application model
An application is modeled as a set of threads or tasks, each of which is
executing on a specific hardware execution context. Every application is
represented as a complete row in the matrix. Every field contains a de-
cision variable. Initially, these variables do not have a concrete value as-
signed. It is a nice feature of ECLiPSe CLP, that it allows constructing data
structures with variables without concrete values, as already mentioned in
section 2.1.4. Later on, an allocation algorithm assigns concrete values to
all decision variables. The concrete value defines, whether a hardware ex-
ecution context is assigned to a task or not. Whenever a variable holds the
value “1”, the task having this value is allowed to execute on that specific
hardware execution context, otherwise it is not.

The example in figure 8.1 shows an 8-core machine where a pair of
cores shares a cache and 4 cores share one NUMA node. In this example,
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every core is explicitly allocated to one task. Task 1 has core 0 allocated,
task 1 gets core 1, task 3’s allocation includes cores 3 and 4 and finally,
cores 4, 5, 6 and 7 are allocated to task 4.

8.3.3 Application requirements

So far, the matrix is able to represent core-to-application allocations. It
does not, however, take application requirements into account. There
needs to be a way of attaching application requirement to the model. The
first step is identifying the most important basic requirements. In a second
step, these requirements have to be attached to the model in a reasonable
way. For this thesis, I identified the following basic application properties.

Exclusive core allocation might be a requirement of an application. An
exclusive allocation of cores to an application provides at least two bene-
fits. First, all threads run at the exact same speed. This is a property impor-
tant to applications which synchronize threads at the end of each round.
Second, the execution is highly predictable. There is no time multiplexing
with other tasks, no scheduling is necessary for exclusively allocated cores
and there are no cache effects caused by running other tasks in between.

Compute bound applications are limited by the execution of instruc-
tions on the CPU core, rather than by memory latencies or I/O. If this is
the case, the same task should not run two of its threads on the same core.
It therefore ensures that all decision variables belonging to this task are
at most ’1’. Additionally, explicit allocations of cores to the application
would be beneficial, but this is another property (see above) not enforced
by the “compute bound” property. If the application does not restrict the
maximum number of cores it can use, the allocation assumes that a higher
number of cores is beneficial to parallelize and finish the compute-bound
task as quickly as possible. The concrete location of the allocated cores is
not highly important, as a compute-bound task mostly operates on a small
amount of data in the cache or even in registers.
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Memory bound is an application property saying that the application is
limited by memory latency times rather than by the instructions executed
on the CPU core. This is mostly the case for applications, which scan big
amounts of memory. These applications might benefit from parallelizing
memory accesses. If an application is memory bound, the policy code
tries to allocate cores from several NUMA nodes. If it is the only appli-
cation running at a moment, the code still allocates all cores, unless the
application explicitly restricts the maximum amount of cores to be used.

Working set size defines, how much data will be accessed by one worker
thread of the application. The data needs to be loaded into RAM, possibly
into several NUMA nodes. It needs to be ensured, that at most as many
threads are placed on a NUMA node, that the sum of their working set
sizes fits onto the NUMA node. Otherwise, the data needs to be placed on
other NUMA nodes as well. To ensure, that cores still perform local mem-
ory access, it is necessary to allocate cores also from those other NUMA
nodes, even if this would not be necessitated by other requirements. As an
example, if four cores should be allocated to a compute-bound application
on the machine of figure 8.1 and the data size is 10GB, but the NUMA
node size is only 8GB, it would be best to allocate two cores of NUMA
node 0 and two other cores of NUMA node 1 and distribute the data to
both NUMA nodes.

Maximum number of cores restricts how many cores will be allocated
to the application at most. Due to internal data structure restrictions, cer-
tain applications do not get faster, if more cores are allocated. Collabora-
tively telling the global allocation code that it is not worth allocating more
cores to this application, allows allocating the remaining cores to another
application, which might well benefit from having more cores allocated to
it.

Minimal number of cores defines, how many cores an application needs
at least. An application might want to define this to meet certain service
level agreements, which it cannot, if it has a lower number of cores. This
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is not always feasible, for example, if the sum of all requested minimal
number of cores is greater than the available number of cores. It is also
problematic, because an application might request exactly the number of
installed cores, leaving no free core for other applications. This would
work from a global point of view if no other application defines a mini-
mum number of cores to allocate. If the request cannot be fulfilled, the
application gets a smaller number of cores. It always knows how many it
finally got.

Cache sharing can be exploited by two cores, if they operate on the
same data structure. If an application already knows, that one thread
preloads data items and a second threads performs operations on the same
data items, the two threads should be allocated on two cores sharing a
cache. Alternatively, two HyperThreads on the same core might be used.
Experiments have shown, that in some cases it is even worth to run a helper
thread which preloads data according to a work-ahead set constructed by
the main thread[145]. On the other hand, an application might want to
avoid cache sharing or using two HyperThreads on the same core, if it
knows that they are accessing completely different data items. This way it
can avoid trashing of the cache contents.

8.3.4 Translating requirements to constraints

Now, as some possible properties are defined, they need to be expressed
as constraints on the decision variables of the matrix. These constraints
are applied even before a concrete instantiation of values is done by the
ECLiPSe CLP solver. Attaching constraints of several applications at the
same time creates a global view of requirements on the allocation. If con-
flicting constraints are applied, it is unfeasible to find a valid solution
meeting all the constraints. Therefore, the policy code performs sanity
checks on the constraints, before applying them. In case that the code
finds conflicting constraints, it weakens some of them in a predefined way
and applies the modified versions of them. Modifying constraints is much
easier than actually finding a complete solution. Therefore, the allocation
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code only modifies them, but still relies on the ECLiPSe CLP solver to
find a valid solution. In the following paragraphs I show how some of the
simpler requirements translate to ECLiPSe CLP constraints at a high-level.

Exclusive core allocation translates to the sum of all decision variables
belonging to the same core (i.e. column) is at most “1”. This means, at
most one task runs on this core. It is however not necessary, that the core
is being allocated at all.

Maximum number of cores translates to the sum of all decision vari-
ables belonging to the same task (i.e. row) has to be less or equal to the
given value.

Compute bound constrains all decision variables of a task to at most
’‘1”. It does however not need to define which cores are suitable, because
compute-bound tasks are assumed to work on local cache, not on mem-
ory. Therefore NUMA-topology-aware allocation of cores is not neces-
sary. The default allocation tries to allocate as many cores as possible to
each task in a fair way. That means that all tasks will get the same amount
of cores, if no further restrictions are applied. This property does not pre-
vent the allocation from placing tasks of other applications on the same
cores. To guarantee that, the exclusive core allocation property needs to
be used (which in many cases makes sense).

Memory bound tries to allocate cores from every NUMA domain in
a balanced way. This property translates to the constraint that the sums
of all decision variables per NUMA domain should not differ by more
than “1”. This means that either the same number of cores is allocated on
every NUMA domain or that some NUMA domains contain at most one
additional core or at most one core less than the other NUMA domains.
It might still be that cores from all NUMA-domains are being allocated,
for example if this task is the only one, or if a second task only needs one
core, or if there is a second memory-bound task which gets one core per
NUMA domain.
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8.3.5 Decision variables and concrete topology-aware al-
location

The final step is instantiating all decision variables with concrete val-
ues. ECLiPSe CLP provides a built-in predicate labeling/1 to trigger the
solver to assign concrete values to all passed variables. After that, the final
result contains the values plus additional topology information. Along the
core numbers to be used by the different tasks, NUMA node information
is passed back to the application as well. This avoids, that the application
needs to do a second query of NUMA node affinities to cores. Similarly,
the result passed back to the applications contains the knowledge of which
cores share a cache and which ones are HyperThreads on the same core.
According to this information, the application creates or destroys threads
and assigns data items in a NUMA-aware manner according to the infor-
mation returned to it. This ensures, that each core accesses local memory.

The result is effectively passed to applications by means of upcalls.
Upcalls arrive asynchronously to the application, potentially at any time.
As section 8.4 explains, the resource manager takes care of parsing the re-
sult from the SKB and generating upcalls. To remove complexity from the
application and to avoid code duplication, a small framework takes care
of interacting with the resource manager and of creating and destroying
threads for the application. This framework is explained in section 8.5.

8.4 Resource manager

The SKB is purely reactive (see section 3.4) and therefore does not re-
compute the global allocation by itself if the set of tasks or their properties
change. It is therefore necessary to have an external component to trigger
the recomputation in changes of task properties or the number of tasks.

The global allocation framework not only provides the allocation logic
in the SKB, but also a resource manager, which is a user-space service in-
teracting with the SKB. The resource manager is the mediator between
applications and the SKB. Applications register their tasks and the tasks’
properties with the resource manager. The resource manager adds, modi-
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fies or deletes facts in the SKB and calls the allocation algorithm, when-
ever it modified something. The re-evaluation potentially affects all appli-
cations, even if only one application changes its requirements. The new
allocation plan contains the difference between the old allocation and the
new one. This means, that only affected tasks are contained in the result
returned to the resource manager. The resource manager reads the new
allocation, parses it and sends upcalls to every application contained in
the result. From the upcalls, the applications learn whether they got more
cores or whether they lost cores.

The resource manager does not decide anything by itself. The com-
plete knowledge comes from the algorithm in the SKB. Also, the knowl-
edge to identify applications and to know, where upcalls should be sent,
comes from the SKB. The resource manager therefore only serves as an in-
termediate point which is able to trigger a re-computation of the allocation
and which is able to send upcalls to applications.

8.5 Framework to register parallel functions
This section explains how to easily make use of the global allocation fa-
cility in an application. Only a few steps are necessary and suddenly, the
whole system benefits from it.

To facilitate the programming of parallel applications using the global
allocation matrix in the SKB, I implemented a simple framework which
allows applications to register parallel functions with the SKB. The frame-
work provides functions to register properties together with the functions.
Many applications contain several tasks which can be executed in parallel.
These tasks can all be registered as parallel functions with the SKB. They
might even have different properties.

A parallel function refers to a C function which can be executed by
one or several threads. These functions should have the property that more
threads can be created at runtime by the framework, such that several of
them execute at the same time. This has especially implications in the
data structures used as input and output of a single function, as potentially
many functions try to read input and try to generate output, if the function
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gets parallelized by the framework.
The framework can be linked as a library to the application. It provides

functionality to register and deregister functions as parallel functions. It
also allows registering properties with the functions, like compute-bound
or the maximal number of cores to be used, for example. The framework
takes care of creating and destroying threads for every parallel function
without interaction with the application. To synchronize between several
threads running the same function, the framework provides some mech-
anisms explained further in section 8.5.1. Because the application does
not need to know how many threads are executing the same function, it
also cannot synchronize them by means of the thread-based synchroniza-
tion primitives. This is the main reason why the framework provides the
necessary mechanisms.

The framework interacts with the resource manager. It is responsible to
forward information about the functions and its properties to the resource
manager, whenever an application registers or deregisters parallel func-
tions with the framework. The resource manager will then take care of the
facts and will call the allocation algorithm, as described in section 8.4. The
framework also registers with the resource manager to get upcalls for the
application. The callback function reads the passed information and based
on that creates or destroys threads. It keeps track of the allocated cores
and the current NUMA nodes in use. The application can register “con-
structors” and “destructors” for input and output data structure, such that
the framework can call these, whenever a new NUMA domain is assigned
to the application or whenever the application lost a NUMA domain. The
framework will pass the per NUMA-domain data structure to every new
thread it created. This ensures that every thread accesses local memory.

The application can decide to only use one global input and one global
output data structure, in which case the framework always passes the same
instance as a parameter to every thread.

Because the framework comes as a library which can be linked to the
application, it is not a requirement, that the application uses the library.
It can directly interact with the resource manager and therefore has full
control over upcalls and what it wants to do on every upcall. This gives
a completely direct control of thread creation and deletion on upcalls and
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also of which data structures should be processed by which thread. The
framework should only serve as a tool to facilitate the interaction with the
resource manager and to deal with threads for applications which do not
wish to do that by themselves.

8.5.1 Using the framework
The framework provides a simple interface to register parallel functions. It
keeps some internal state and takes care of creating and destroying threads.
It also interacts with the resource manager. The example below shows
pseudo code of an application which uses worker threads registered as
parallel functions with the framework.

The pseudo code below shows a skeleton of a worker thread used in the
application, for which the framework dynamically creates and destroys
threads:

parallel_worker(void *arg) {

//Optional, if tracing used: Initial data point

tracing_add_bucket_entry_per_thread(0);

while(!parallel_should_terminate()) {

do work, use data structure passed in arg

//Optional, if tracing used: How much work done so far?

tracing_add_bucket_entry_per_thread(some value);

if (producer done && data structure empty) {

break;

}

}

}

The worker thread gets the data structure associated with it passed
as an argument. The actual work is performed in the while loop. As
long as the framework does not ask the thread to terminate, the while loop
continues. The worker thread reads data items from the data structure,
does some work on them and produces output, which it puts back to the
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output part of the data structure. For performance tracing, each worker
thread may optionally indicate how much work it has processed so far by
adding an entry in every loop. The tracing framework stores the amount
together with a time stamp, such that later the main function can output
the work amount/timestamp pairs to a file. If it is used at all, an initial
timestamp should be created by the thread.

There are two reasons why a thread should terminate. First, if the ap-
plication loses a core, the framework gets notified by the resource manager
and asks the thread to terminate by means of the
parallel should terminate() function (see section 8.5.2 for a discus-
sion). Second, if the input data structure is empty and if it is known, that
the data producer is done, the worker thread can terminate, as no more
data needs to be processed.

The main function is also given as pseudo code below.

main() {

// Initialize the framework

parallel_init(...);

// Optional: use tracing

tracing_init_buckets("somename");

// Register parallel_worker() as a function,

// which can be run by a varying number of

// threads

parallelfunction(parallel_worker,

global data structure

or function to create and destroy

NUMA-aware data structures, ...);
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while (more data to be produced) {

if (one global data structure) {

add item to data structure;

} else {

chose next NUMA domain;

// libnuma call

numa_set_preferred(numa_domain);

// Get data structure on this NUMA domain

parallel_get_datastr_numa(parallel_worker,

numadomain);

add item to this data stucture;

}

}

signal producer done;

// Wait for all threads of this function

// to terminate

parallelfunction_wait_terminated(parallel_worker);

// Optional, if tracing used

tracing_write_buckets();

tracing_close();

}

The main function of the application initializes the simple framework.
Optionally, the application might use the tracing framework to produce
performance graphs. The name passed as argument to the “tracing init”
function is part of the output file name.

Next, the main function registers the worker thread function as a par-
allel function. From this point on, the framework starts creating threads
executing this function. During runtime, the framework may create more
threads or destroy threads respectively indicate, that a thread should ter-
minate by means of the parallel should terminate() function. Sec-
tion 8.5.2 discusses destroying threads in more detail.

The main function produces data items to be processed by the worker
threads. Depending on the application’s architecture, it might either use
a single global data structure for input and output for all worker threads
or it might want to use a per NUMA-domain data structure. If it uses one
global data structure, it adds every data item to be processed to this data
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structure. Otherwise, it selects one NUMA-domain, gets the input/output
data structure associated with it and adds the data item to this data struc-
ture. The worker threads do not need to know explicitly, whether one data
structure or a data structure per NUMA node is being used. They get the
“right” data structure passed as an argument in any case.

After the main function has produced all data items, it signals that it is
done, for example by setting a flag. This is, of course, application-specific
and may be implemented differently.

Finally, the main function waits for all worker threads to terminate.
The function parallelfunction wait terminated() is similar to the
pthread join() function. It waits for all threads to terminate, but the
application does not need to know how many threads there are at that mo-
ment. If tracing was used, the results can be written to a file at the end.

8.5.2 Terminating threads

The goal of the global resource allocation code is to ensure that resources
are allocated such that the requirements of the applications can be satis-
fied as much as possible. The global allocation code in the SKB is pure
policy code and as such cannot enforce anything. This is especially “prob-
lematic” for removing resources or for avoiding that an application creates
threads, even if the cores is not assigned to it.

The current implementation relies on the application, to destroy threads
by using the parallel should terminate() function in the thread’s
while loop.

To actually ensure, that an application destroys threads, the operating
system could kill it. This is however problematic as well. The thread
might just have acquired a lock on the output data structure when it gets
killed.

At least three solutions or a combination of them could solve the prob-
lem in a less “destructive” way. The solutions are listed below:

1. Notify the application that it should destroy a thread. Give it some
time. If it does not terminate the thread, kill it.
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2. Notify the application that it should destroy a thread. Let the OS
move the thread to another core, which still belongs to the applica-
tion. Possibly reduce the priority of this thread.

3. Notify the application that it should destroy a thread. Move threads,
which should have been terminated, to a dedicated core, which runs
all threads of all applications, which did not terminate threads by
themselves.

The current implementation does not perform any of these solutions.
At the moment, Barrelfish does not have any access control to cores, which
means, that every application can create threads on every core at any time.
The research in this thesis is about the feasibility of a declarative global
allocation and a framework, which handles thread creation and deletion.
It is not about security or enforcing the policies. It would, however, be
interesting future work to experiment with the three solutions mentioned
above and see, how well application resources, especially cores, can be
managed this way.

Even though the thesis is not about enforcing policies, I have some
thoughts about how security could be enforced. A “CPU core” capability
(or some other mechanism) could be used to control on which cores an ap-
plication can create threads. There are a number of interesting questions,
which arise. First, how should the operating system ensure that an appli-
cation cannot use the core anymore, if it just lost it? Second, how should
the protocol look like, when applications lose a core? Threads need to be
terminated by the application or moved by the OS, before the capability
gets deleted. The exact way of the “remove core” operation needs to be
determined.

8.5.3 Overall architecture
The overall global allocation framework consists of three interacting parts,
shown in figure 8.2. First, there is the policy code in the SKB, which de-
cides on the number of cores and concrete IDs for each task. Second, there
is the resource manager, which interacts with the SKB by adding, modi-
fying and deleting facts and by calling the allocation algorithm. It also
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Figure 8.2: Interactions between the application, the framework, the re-
source manager and the SKB.

interacts with the framework linked to each application. Finally, a simple
framework handles thread creation and deletion within the application and
interacts with the resource manager.

8.5.4 Use-cases

To validate the framework and the declarative global allocation, I used two
real applications as use-cases. Both applications were existing, but needed
small modifications in order to make use of the simple framework to reg-
ister parallel functions. These two use-cases are presented in section 8.6
and section 8.7 respectively.

8.6 Use case 1: pbzip2

The first use-case is pbzip2, a compression tool which compresses or de-
compresses data in parallel. It is compute bound and has a simple struc-
ture, the next section will show.
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Figure 8.3: pbzip2’s architecture

8.6.1 Architecture

pbzip2[50] is a parallel version of the bzip2[119] compression tool. pbzip2
has two parallel phases: compressing data or decompressing data. Sev-
eral threads running on different cores can therefore execute either the
compression or the decompression function in parallel. Each thread com-
presses or decompresses a different data block. The input data file gets
partitioned into several data blocks. pbzip2 enqueues each input block
into a common input queue. Each instance of the compression or decom-
pression function reads one input data block at a time, processes it and
writes the result data block into a common output queue. The file writer
thread writes the result data blocks in the same order as the input blocks
to the specified output file. The ordering of the blocks is ensured by block
sequence numbers. Figure 8.3 shows the architecture of pbzip2.

The compression and decompression functions are compute-bound and
operate on a block size of 900kB. This working set size still fits into L2
cache. Most of the memory accesses can therefore be handled at least
by the L2 cache. The property “compute-bound” rather than “memory-
bound” is the appropriate one.

Internal data structure limitations allow for a maximum of 4096 threads.
Because the execution of the compression or decompression function is
completely on a per block basis, pbzip2 benefits from a high number of
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cores, ideally all available cores, if it is the only running application.

Deciding on the number of cores

When the user starts the original pbzip2 implementation, it reads the load
average queue and applies some heuristics. The output is the number of
pthreads to be created. This number remains the same during the complete
execution of pbzip2. pbzip2 decides on the number of threads based on a
purely local view. It does not know, if one application is about to termi-
nate or if another application is starting at the same time. In both cases,
pbzip2 will create a suboptimal number of threads. In the first case, it
creates only a few threads and compresses or decompresses a potentially
large file with the threads created once at startup time, even if most of the
machine becomes idle. In the latter case, pbzip2 creates one thread per
available core. Because another application is about to start as well, the
cores will be time-multiplexed between the two applications, which again,
is suboptimal.

For this thesis, I modified pbzip2 such that it uses the simple frame-
work to register the compression or decompression function as a parallel
function with the SKB. It attaches the properties “compute-bound” and
“maximum of 4096 threads” to the parallel function. The SKB runs the
global allocation code and sends an upcall to pbzip2 containing the in-
formation of how many and which cores it can use to run the function.
The decision taken in the SKB is based on global knowledge. Therefore,
the decision is much more informed. Furthermore, the number of allo-
cated cores can change during runtime. Whenever the allocation changes,
the simple framework sends an upcall to pbzip2 again. Based on the new
plan, pbzip2 either creates more threads executing the compression or de-
compression function, or it terminates the threads which were running on
cores which it just lost.

8.6.2 Evaluation
The evaluation in this section is specific to pbzip2 and demonstrates that
only few changes are necessary to benefit from the global allocation facil-
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ity.
First, I evaluate, how many lines of code need to be changed to make an

existing application SKB-aware. The goal is to show, whether it is feasible
at all to push the responsibility of allocating threads into a framework and
finally into the SKB. This is a qualitative metric and depends heavily on
the exact application. Second, I evaluate the performance benefit when
the application uses the framework, and especially the global knowledge
by the SKB, to decide on the core allocation.

LOCs changed

pbzip2 has a specific place where compression or decompression threads
are explicitly created. Also, there are specific places where all threads
terminate and where the main thread waits for all worker threads to termi-
nate. This structure allowed me to modify pbzip2 at these places in a way,
that the functions get registered as parallel functions, instead of explicitly
creating threads. Modifying only 25 lines of code made the pbzip2 imple-
mentation SKB-aware. Therefore, the simple framework provides a rich
enough interface, such that applications which explicitly create a number
of threads can be modified in only a few lines of code. They immediately
benefit from the global allocation.

Dynamic number of threads

One goal of having a global allocation is adaptability to a changing set
of running applications. This means, that pbzip2 should react in terms of
number of threads according to new allocations received through upcalls.

In an experiment, I started a pbzip2 instance on a 24 core machine. The
instance compressed a 4GB input file. After 60 seconds I started a second
pbzip2 instance on the same machine. This instance compressed a 2GB
input file. Because it was twice the exact same program, both instances
had the same properties. The expected behavior was that the first instance
gets all the 24 cores at the beginning. As soon as the second instance starts,
the first instance should give up half of the cores (because they have the
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Figure 8.4: Changing number of allocated core per instance

same properties, they are being handled the same). The cores should be
allocated to the second instance.

Figure 8.4 shows the core allocation of both instances. The x-axis
shows the elapsed time. The y-axis shows the core number allocated to
one of the two instances. The diagram shows that after 60 seconds the first
instance gives up half of the cores. The second instance gets these cores
and compresses the input file for about 90 seconds. After a second short
parallel phase, the second instance terminates and releases all cores. The
first instance again runs on all 24 cores.

Performance

The performance evaluation shows to what extent performance can be im-
proved, or the overall system throughput can be kept at the same level,
when the global allocation code allocates resources in a conflict-free man-
ner.

Figure 8.5 compares the original implementation with the modified
one, both on Linux. Both instances compress the same input files. The
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Figure 8.5: Compressing input file: Original vs. SKB-aware version

x-axis shows the input file size and the y-axis the execution time. The
modified version performs slightly better. The reason is that the modified
version creates threads exactly on the allocated cores and therefore pins
the threads explicitly to one core. The original implementation on Linux
does not do thread pinning. The threads actually move which causes some
performance drop. Figure 8.6 shows a similar behavior, but for decom-
pression.

More interesting is the total throughput of the system. In this experi-
ment, one pbzip2 instance executes in the system for 60 seconds. After 60
seconds, a second instance starts and runs concurrently. As figure 8.4 al-
ready shows, both instances run on distinct cores. The sum of the through-
puts of both instances is about the same as the throughput of one single
application, as figure 8.7 shows. This means, the throughput between sec-
ond 0 and second 60 is the same as between second 60 and second 140.
At the right side of the graph, there is some cleanup noise.
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8.6.3 Summary

The framework provides enough mechanisms and a rich enough interface
to easily modify an application like pbzip2, which already uses worker
threads to process data items. Few lines of code needed to be changed to
make it SKB-aware. The global allocation code handles core allocation
well, such that the overall system performance can be increased slightly.
An important benefit is that by only changing a few lines of code, the
modified pbzip2 version can adapt to a changing number of allocated cores
at runtime.

The use-case in the next section, a column store, shows that even a
more complex and more performance-critical application benefits from the
global allocation code.

8.7 Use case 2: Column store

The second application is a modified version of a column store developed
in our group[3]. The column store engine executes one scanning thread
per core which constantly scans a part of the data in a column oriented
way. The column store partitions the data such that all scanning threads
scan the same amount. Because the data set is large, NUMA-awareness is
important. Still, executing queries on single data items is compute-bound.
Due to the synchronization point after one scan, it is important, that the
scanning threads run at the same speed. The total latency is determined by
the slowest scanning thread.

The column store was modified to become SKB-aware. It uses the
framework to register scanning threads with the resource manager and fi-
nally with the SKB. Based on upcalls, it creates and destroys scanning
threads, as explained further in this section. The work presented in this
section has been published recently[48].
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8.7.1 Problem

Similarly to pbzip2, the column store needs to decide how many threads
it needs to create. Additionally, it needs to decide how it should partition
and distribute the data.

Typically, a data base engine (a classical one or a column store en-
gine) has a deep knowledge about its data organizations and its algorithms
to process the data. Therefore, it also has a clear knowledge of its re-
quirements from the operating system and especially from the hardware
resources. Traditionally, database systems tried to incorporate all system-
level information and derive policies by themselves. To do so, database
systems tried to circumvent the operating system’s policies. Typically the
assumption is, that the database system is the only running application
and that there is no interference with other applications. This, together
with the assumption that the machine configuration does not change, is
also one reason, why a purely local policy decision typically worked well.

Nowadays, as machines are getting bigger and bigger in terms of re-
sources (e.g., number of cores, main memory), the machine can be shared
by a database system and some other applications. However, in this case,
a purely local decision of how resources should be used is not the right
way anymore. Instead, the global allocation should be performed. A
rich interface should however incorporate as many requirements of the
database system as possible to guarantee nice behavior, even if the ma-
chine is shared.

Of course, an administrator could statically partition big machines to a
fixed number of applications, but this would mean that the set of applica-
tions should not change and also, that a big enough portion of the machine
would get allocated to each application to handle peaks well. This would
lead to overprovisioning which, in most cases, is a waste of resources. A
more dynamic allocation of resources based on the current workload and
application properties, which should be met, is advantageous. First, the
database does not need to be overprovisioned. It can be run together with
another application. Still, both applications perform well, if the right set
of resources is allocated to them. Second, the database does not need to
deal with low-level system resource knowledge, if the system allocates the
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right set of resources based on property specifications.

8.7.2 Internal knowledge
The column store has two sets of properties. First, there are the generic
properties described in section 8.3.3. These are system properties taken
into account during the global allocation. Second, the column store has
application-specific properties. The user or database administrator can
specify a time, within which queries have to be answered. The column
store therefore has to meet a service-level agreement (SLA). Based on the
SLA value, the column store decides how many cores are necessary to ful-
fill the maximum response time. The time depends on the current underly-
ing hardware. The column store uploads an application-specific function
to the SKB to compute the minimal number of cores to be used, based on
the SLA value and either the available hardware knowledge in the SKB
or online measurements performed by the column store. The function de-
cides the minimal number of cores necessary to fulfill the SLA agreement.
This value needs to be taken into account by the global allocation code.
The column store adds the requirement of a minimal number of cores to
the SKB, such that this requirement can be taken into account.

The data size is another important property. The goal is to not overload
a NUMA node with data. More correctly, it is actually not possible to
overload a NUMA node. Instead, a non-careful allocation would assign
data to another NUMA node. However, it is better to explicitly know and
control which NUMA nodes contain data and on which NUMA nodes
there should be threads processing the data.

The actual minimal number of cores is therefore determined by two
metrics. The first one determines how many cores are necessary to ful-
fill the SLA agreement, i.e., the maximal response time. The second one
determines how many NUMA nodes are necessary such that data can be
distributed in chunks of at most NUMA node sizes. Each NUMA node
should contain at least one core allocated to the column store. This is the
minimum number of cores to allocate based on data size and NUMA node
sizes. The greater value determines the actual minimal number of cores
to be used. The column store passes this value to the global allocation
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framework.

8.7.3 Registering scanning function

The column store uses the simple framework presented in section 8.5 to
register scanning threads as flexible parallel functions. The properties,
which it registers along with the function, are first, that it is compute-
bound, second, that it needs an exclusive core allocation, and third, that a
minimal number of cores is requested. As more cores are not necessary,
the column store will not use additional ones, even if more would be as-
signed to it. Therefore it restricts the maximum number of cores to be
allocated to the same number as the minimal cores to be allocated.

Like every application, the resource manager upcalls the column store
and provides the concrete allocated cores together with NUMA domain
information. The column store uses the result to create threads on the
respective cores and starts distributing data. Finally, it starts the scanning
threads on these cores and processes the queries.

8.7.4 Evaluation

Deployment on different systems

As mentioned in section 1.1, no two machines look the same. Each ma-
chine has a different amount of CPU cores and a different amount of
NUMA nodes. Also, NUMA nodes are of different sizes. Still, the col-
umn store has to fulfill the SLA agreement on every machine and the data
should be partitioned such that no NUMA node gets overloaded.

In this experiment we run the modified column store on four different
machines1. The user data size is 8GB. An additional 1GB of metadata has
to be added. This leads to a total data size of 9GB. Table 8.1 shows the
number of allocated cores on every system as well as the actual execution
time. The column store violates the SLA agreement once. This is due
to the fact that the application-specific function, computing the minimal

1The experiment was conducted together with Tudor Salomie and Jana Giceva.
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Hardware SLA #Cores #Cores Final Size of Actual mean
characteristics req. by SLA by NUMA #cores partition response time

32 cores 2s 8 1 8 1GB 1.66s
128GB RAM 4s 4 1 4 2GB 3.27s
32GB/node 8s 2 1 2 4GB 6.54s

32 cores 2s 8 5 8 1GB 2.18s
16GB RAM 4s 4 5 5 1.6GB 3.55s
2GB/node 8s 2 5 5 1.6GB 3.55s
16 cores 2s 8 3 8 1GB 1.68s

16GB RAM 4s 4 3 4 2GB 3.25s
4GB/node 8s 2 3 3 2.67GB 4.33s
48 cores 2s 8 1 8 1GB 1.87s

128GB RAM 4s 4 1 4 2GB 3.71s
16GB/node 8s 2 1 2 4GB 7.37s

Table 8.1: Deployment of the SKB-aware column store on different ma-
chines.

number of cores, is derived from an average measurement and has not yet
been updated on this concrete machine.

For the second machine it is necessary to use 5 NUMA nodes to dis-
tribute the data size of 9GB to different NUMA nodes. Even though 4
or 2 cores would be sufficient to meet the SLA requirement of 4s and 8s
respectively, at least 5 cores will be allocated. This is because data should
be processed by a local core on every NUMA node. 5 NUMA nodes are
allocated to the column store, therefore at least 5 cores (at least one per
NUMA node) have to be allocated to the column store.

Running the column store and another application concurrently

The column store is a latency critical application. After every round of
scanning data, all threads synchronize. The overall latency is therefore
determined by the slowest scanning thread. Ideally, each thread executes at
the same speed. This means, that there should be no interference between
the column store’s threads and other applications.

By registering the scanning threads with the SKB, the global allocation
code ensures exclusive allocation of cores to scanning threads. Figure 8.8
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shows the performance implications of the column store running concur-
rently with another compute-bound application. The baseline shows the
column store running as the only application. The second experiments
shows the performance when an application runs on one of the cores al-
located to the column store. The third scenario uses the SKB. The global
allocation code removes the core, on which the other application runs,
from the column store. Therefore the column store runs on one core less,
but does not interfere with the other application.

Figure 8.8 shows that the SKB-aware version of the column store is
running with only 47 cores instead of 48 cores, but, without interfering
with the other application, performs better than the 48-core version which
interferes with the other application. It is therefore important that a global
view decides on which cores should be assigned to which application.

This information cannot easily be derived by the column store. It de-
pends on the scheduling state of the OS and on the knowledge of the other
applications. It does not make much sense for the column store to try to
take decisions based on local knowledge.

Still, the column-store specific information is taken into account by
the operating system, because the column store pushes its resource re-
quirements to the SKB. This creates a global view of system state and
application specific requirements in the SKB and both can be taken into
account.

In a second experiment2, the column store is the only running task
initially. After every 5 minutes, a new compute-bound application starts.
In a naive setting, every application decides on its own on which core it
wants to run, based on purely local knowledge. The experiment shows the
performance drop which happens, if all naive applications decide to start
on core 0. Figure 8.9 shows the results.

The naive column store engine has a dramatically higher response
time. Already after the first new application enters the system, the col-
umn store cannot meet the SLA agreement anymore, because its scanning
thread on core 0 runs at half of the speed of the other scanning threads.
The SKB-aware column store gets upcalled and informed that it has lost

2The experiment was conducted together with Tudor Salomie and Jana Giceva.
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Figure 8.8: CSCS performance when deployed in a noisy system

a core. The column store engine redistributes the data to other cores and
continues executing queries using the remaining threads, which, however,
run all at the same speed.

In the naive scenario, the next application starting on core 0 causes the
next performance drop, while the SKB-aware version gets another upcall
telling the column store that it has lost a second core. Even though the
column store has lost two cores now, it can still meet the SLA agreement,
because all remaining threads run at the same speed.

8.7.5 Summary
The modified version of the column store uses the same framework as
pbzip2. This shows, that the framework is general enough to handle even
more complex applications like, for instance, the column store.

The column store registers the scan function as a parallel function with
the resource manager and finally the SKB and gets upcalls telling it, which
cores it can use now or which ones it just lost. This makes the column
store adaptive to a changed environment, especially when new applications
enter or leave the system. Also, the high-level requirements on hardware
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resources facilitate the column store, because it does not need to learn
about specific hardware knowledge by itself. The allocation algorithm in
the SKB incorporates the column store’s properties and returns suitable
hardware resources according to these properties.

8.8 Evaluation of the allocation policy code

The previous sections showed that the global allocation is easy to use in
applications. They also evaluated the benefits of the specific applications.
This section evaluates the global allocation code itself. The focus is on
code complexity and maintainability of the policy code.

The section also summarizes the execution time of the algorithm. While,
as already mentioned earlier, it is not the main focus of this thesis to pro-
duce the most performant allocation code itself, at least reasonable perfor-
mance is necessary to claim that it is a useful framework.
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Class LOCs
Matrix 39
Algorithm 23
Knowledge access and constraints 153
Interface 77
Output 52
Sanity-checking 20
Misc 20
Total 384

Table 8.2: LOCs to implement global allocation in the SKB.

8.8.1 Code complexity

Table 8.2 lists the lines of code needed to implement the global alloca-
tion in the SKB. This code consists of several parts. First, the construc-
tion of the decision matrix based on hardware information is a core piece
of code. Second, interface functions prepare and store the passed facts.
The resource manager calls these interface functions and passes applica-
tion properties as input parameters to the interface functions written in
ECLiPSe. Third, sanity-checking functions ensure that there are no con-
flicting properties. This is important, otherwise ECLiPSe would not be
able to find a solution and would simply output “No.”. Finally, there are
helper functions enabling all the main functions to access the necessary
knowledge in an easy way.

As table 8.2 shows, the core functionality is implemented in a few lines
of code. 20 lines of CLP code are used to construct the decision matrix and
23 lines of CLP code are used to call the various functions which attach
constraints to the matrix. The “knowledge access and constraints” func-
tions interpret application properties and hardware knowledge and derive
and attach constraints such that application requirements are handled the
correct way. This category needs a relatively large amount of code. The
interface consists of several high-level functions which create the right
facts or, in the case of removing a task, ensure that all associated facts are
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deleted and the task’s state in the SKB is cleaned up. The “output” cat-
egory includes goals to compute the difference between the new and the
old allocation (see section 8.4) and to transform the algorithm’s result into
a suitable output list. Finally, there is a small amount of sanity-checking
code and various small helper functions, with 20 lines of CLP code each.

The total amount of 384 lines of code is well maintainable. Further-
more, it is easily extensible. If new requirements have to be modeled, it is
sufficient to add a new small goal which transforms the requirement based
on the necessary hardware knowledge and/or application properties into
an additional constraint on the matrix.

The model follows a clear policy/mechanism separation as all other
parts relying on the SKB. For this part of the codes, it means that the
allocation policies are completely separate from the resource manager and
from the framework which creates and destroys threads. As long as the
interface does not change, the policy code can be changed without needing
to change any line of the framework or the resource manager. This gives a
lot of freedom to experiment with new policies. Applications immediately
follow the new policies.

8.8.2 Execution time

It is difficult to measure execution time in the general case. The execution
time heavily depends on the number of concurrently registered applica-
tions and on the amount and type of their resource requirements. The
more detailed the requirements are, the more complex constraints have to
be applied to the matrix, thus resulting in a higher execution time in the
ECLiPSe solver. The thesis does therefore not provide a graph of the ex-
ecution time, but instead a table for selected configurations with actual
execution time measurements. The goal is to show that the execution time
for re-evaluating the global allocation is reasonable. The results are shown
in table 8.3.
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Applications Execution time
Column store 5ms
Column store + compute-bound application 13ms
1 pbzip2 instance 5ms
2 pbzip2 instances 13ms

Table 8.3: Execution time for different configurations

8.9 Summary and future work

Global resource allocation is getting increasingly important on modern
machines. Modern machines can be spatially shared among many appli-
cations. Even database engines can run concurrently to other applications
and still perform well. To ensure good performance, a global view over
all running applications and their requirements in terms of hardware re-
sources is critical in order to derive smart resource allocation policies.

Using a model which unifies hardware knowledge with application re-
quirements provides a global view and allows deriving allocation policies
which improve the overall system performance. The high-level declara-
tive nature of the implementation reduces the code complexity. Only a
few simple functions written in ECLiPSe achieve a good result. The sim-
ple functions are well maintainable and easy to change and adapt to future
needs, if necessary.

The clear policy/mechanism separation allows evolving the policy code
without changing the applications, the framework or the resource man-
ager. Changing the policy code immediately impacts application behavior.
It can be validated immediately, whether new policy code actually leads to
desired behavior.

The global allocation framework can be easily extended to managed
language runtimes. At the lower end of the software stack, the managed
language runtime could interact with the framework and register parallel
functions and properties and receive callbacks with allocation plans. In
this scenario, it might even make sense, if the managed language runtime
directly interacts with the resource manager. The managed language run-
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time would get callbacks directly and could explicitly manage its threads.
At the upper half of the software stack, there are applications written in
the managed language runtime. The runtime has deep knowledge of the
application code. Not only does it see the code, but there is still seman-
tic information available which might help the runtime to derive the right
application properties in an adaptive way at runtime.

A high-level functional language has the freedom to parallelize certain
operations, like, for example, a map function which applies an operation
to a list. It is not important for the programmer to known the number of
actual threads assigned to the program, because the final result is the same,
independently of whether one or several threads worked in parallel on por-
tions of the list. Combining a high-level language with this framework is
an interesting future work.
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Chapter 9

Conclusion

9.1 Summary

The hypothesis of this thesis was that if the operating system had a facil-
ity to reason about the underlying hardware, it can better adapt to it and
make use of the available hardware. Further, code complexity can be taken
out of the operating system’s mechanisms, making the mechanisms much
simpler.

In this thesis I was able to show that applying high-level declarative
language techniques allows dealing with the increased hardware complex-
ity found in current machines. Adaptability to the underlying hardware
can easily be expressed by means of declarative algorithms that describe
what goal is to be achieved, but not how to get there. Because the algo-
rithms are based on high-level knowledge, which is abstracted from the
hardware, they work on new machines, even if they are not known at the
design time of the algorithm. The high-level reasoning enables the system
to derive new knowledge in the future by combining facts in an unforeseen
way at the time of designing the algorithm.

By using high-level language techniques for reasoning about the sys-
tem, the complexity typically involved in mechanism code can be taken
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out. This greatly simplifies mechanism code, because it only needs to ap-
ply the policy parameters derived outside the mechanism code. The mech-
anism code does not need to decide anything itself and especially, it does
not need to handle special cases, independent of the underlying hardware.

The use-cases presented in this thesis prove that the operating sys-
tem does indeed adapt to the underlying hardware by using high-level de-
scriptions of the goal to be reached, which in turn are based on high-level
knowledge of the current underlying hardware. The algorithms used are
implemented in relatively few lines of code. This makes them well under-
standable and easy to maintain. More concretely, the use-cases show how
simple algorithms can lead to much better performance on the one hand
(for example, in the multicast messaging case) and how difficult hardware
configuration problems can be solved (for example, in the PCIe case) with
few natural hardware configuration rules.

Obviously, more case studies in the context of operating systems de-
signs could be done to prove the usefulness of applying high-level declar-
ative languages to reason about hardware. The next section sketches ideas
for future work.

9.2 Directions for future work
Having the SKB as a basis to implement reasoning algorithms, there are
many extensions and further use-cases possible. There are different lev-
els at which it would be interesting to explore to what extent high-level
languages can help to reduce complexity.

At the hardware configuration level, algorithms in the SKB can help to
deal with more classes of hardware, not presented in this thesis. Examples
include USB, which needs configuration on hotplug events, even if it is not
at the same level of complexity of PCIe configuration. As history shows,
new hardware, which is constantly arising, is likely to complicate hard-
ware management, rather than facilitating it. Furthermore there is a clear
trend towards hotlpugging almost everything. While today it is already
normal, that USB devices can be hotlpugged on commodity machines,
there is a trend towards PCIe hotplugging (today only in bigger server ma-
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chines), hotplugging of cores and memory (again, supported by big server
machines, but not yet by commodity desktop machines), and hotplugging
of new external devices, such as, for example, Thunderbold. The operating
system has to deal with hotplug and hot-unplug events at a low-level, but it
also has to decide about resource allocations in a much more dynamic way,
compared to the almost static hardware configurations found in past and
today’s commodity systems. Dependencies have to be resolved and en-
sured and decisions on which resources and how they should be allocated
have to be taken. As machines are getting bigger, power-save modes of
single pieces of hardware are becoming more important. Deciding which
devices to turn off or turn on again and at which time and for how long, be-
comes more complex. Turning-off times, re-activating times, the amount
of energy which can be saved, and the cost of potentially moving running
tasks, all have to be considered to derive reasonable power-management
policies.

Deciding on computation placement is getting more important, as ma-
chines are getting bigger. These decisions become even more complex,
once machines become even more heterogeneous than today. The global
allocation framework presented in this thesis is a first step towards decid-
ing on core-to-task allocations based on high-level requirements descrip-
tions of the applications. A deeper research in this direction will provide
more insight, on how application requirements can be matched with het-
erogeneous hardware. More fine-grained hardware properties have to be
taken into account, for example, whether a core is able to run all the in-
structions an application wants to execute. If an application needs precise
floating point, it needs to run on a core which supports that. If an appli-
cation makes use of a cryptographic instruction set extension, it needs a
core that supports that. In both cases, it may be the case in the future that
not all cores support the complete instruction set. Cache-coherency (or
the lack of it) may constrain the application on a certain group of cores, if
the application needs cache-coherency and the hardware provides islands
of coherent cores. While it is not yet totally clear exactly, what future
hardware will look like, it is likely that the complexity will grow and that
operating systems will have to deal with the examples mentioned above.

With bigger and more complex machines it might be worth implement-
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ing applications in high-level managed languages. These languages can
derive concurrency and create threads in cases where data can be processed
in parallel, without changing the semantics of the program and without
the programmer having created threads explicitly. Managed language run-
times have a rich interface to the applications running on top of them. They
can monitor the application and derive resource requirements which suit
the application best. Additionally, managed language runtimes still have
access to semantic information. It is not just machine code, which executes
on top of the runtime and accesses some memory addresses. Instead, the
runtime knows what functions access what type of objects. It also knows,
which threads communicate with each other over which objects. This in-
formation provides more insight and allows the runtime to derive better
and more detailed requirements, which it can register with the operating
system. By extending a managed language runtime and by extending the
global allocation code, it is possible to let them collaborate better and to
use the available heterogeneous hardware much better. When a managed
language runtime gets extended such that it collaborates with the operating
system in terms of resource management, suddenly all applications benefit
from the global allocation framework. The effort of modifying a managed
language runtime has to be taken only once. Unmodified legacy applica-
tions benefit immediately from global resource allocation decisions. This
is much better than modifying many legacy applications written in a lan-
guage like C.

Finally, it would be worth to explore other constraint logic program-
ming engines. ECLiPSe is extremely expressive and allows experimenting
almost with no limitations. On the other hand, it is not the fastest language.
As mentioned in section 3.8.2, more modern solvers might improve per-
formance.
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T. Cod: Database / operating system co-design. In Proceedings of
the 6th Biennial Conference on Innovative Data Systems Research
(January 2013), CIDR’13.
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