
Master’s Thesis Nr. 4

Systems Group, Department of Computer Science, ETH Zurich

Support for heterogeneous cores for Barrelfish

by

Dominik Menzi

Supervised by

Adrian Schuepbach
Andrew Baumann
Timothy Roscoe

4. Oct 2010 - 3. Jul 2011

Contents

1 Introduction 4
1.1 Motivation . 4

2 Background 5
2.1 Barrelfish . 5

2.1.1 IDC / Flounder . 5
2.2 SCC . 6

2.2.1 Overview . 6
2.2.2 Memory controller memory layout 8
2.2.3 Write-combine buffer . 9
2.2.4 FPGA / System Interface 11

2.2.4.1 Host-SCC messaging 11
2.2.4.2 Benchmarks . 15

3 Heterogeneous Support 18
3.1 Overview . 18

3.1.1 Boot Process . 18
3.1.2 Communication . 19
3.1.3 Application Start . 20

3.2 Implementation . 20
3.2.1 Cross-Architecture Boot . 20
3.2.2 Cross-Architecture Communication Protocol 20
3.2.3 Cross-Architecture Application Start 21

3.3 Evaluation . 24
3.4 Future Work . 26

3.4.1 Endianness . 26
3.4.2 Capabilities . 26

4 SIFMP - SIF message passing 27
4.1 Overview . 27
4.2 Implementation . 27

4.2.1 Possible Communication Schemes 28
4.2.1.1 Double Proxy . 28
4.2.1.2 Double Proxy, Notificationless 28
4.2.1.3 Double Proxy, IPI Notifications 29
4.2.1.4 Single Proxy . 29

1

Contents

4.2.1.5 Encapsulation . 29
4.2.2 SIFMP Communication . 30
4.2.3 SIF . 32

4.2.3.1 Host Part . 33
4.2.3.2 SCC Part . 34

4.2.4 Bootstrapping . 34
4.2.4.1 SIF . 34
4.2.4.2 Monitor . 34
4.2.4.3 Inter-SIF . 35

4.2.5 RPC Clients . 35
4.3 Evaluation . 36

4.3.1 Benchmarks . 36
4.4 Future Work . 37

4.4.1 Multicore SCC . 37
4.4.2 Data Prefetch . 37
4.4.3 SCC-Host messaging . 37
4.4.4 IPI . 40
4.4.5 Routing . 40

5 Protocol Selection 41
5.1 Overview . 41
5.2 Implementation . 41
5.3 Evaluation . 42
5.4 Future Work . 43

6 Related Work 44

7 Conclusion 49

A SCC 50

B Benchmarks 55

2

As computer hardware becomes more powerful and cheaper, hardware other than
the CPU becomes suitable to run applications. This has been used to offload work
to devices that are more suited for the workload, like highly parallelizable computing
workloads that are offloaded to graphics cards.

Barrelfish is a “Multikernel”, a new way of building operating systems that treats
the inside of a machine as a distributed, networked system, and runs a different
kernel, or “CPU driver”, on every core.

This possibly makes Barrelfish highly suitable to run not only on a homogeneous
set of CPUs and cores, but to include processors on peripheral devices, which may
be of different architecture.

In this thesis I present two extensions to Barrelfish that allow it to be run on a
heterogeneous set of CPU cores, either using x86 64 and x86 32 cores in one machine
or using Intel’s Single-Chip Cloud Computer to extend the set of cores available in
a machine.

1 Introduction

1.1 Motivation

As computer hardware becomes more powerful and cheaper, hardware other than
the CPU becomes suitable to run applications. This has been used to offload work
to devices that are more suited for the workload, like highly parallelizable computing
workloads that are offloaded to graphics cards.

Barrelfish is a “Multikernel” [BBD+09], a new way of building operating systems
that treats the inside of a machine as a distributed, networked system, and runs
a different kernel, or “CPU driver”, on every core. Barrelfish also uses techniques
like logic programming and constrained optimization to reason about hardware and
devices [SSBR08].

This gives gives an approach to consider not only offloading applications and
specific workloads to different devices, but possibly have the operating system span
diverse hardware with different architectures, such as CPUs, GPUs, programmable
NICs or other devices suitable for running an operating system.

In this thesis, I will demonstrate two versions of barrelfish that are able to run on
heterogeneous systems. The first version, described in chapter 3, can run on x86 64
and x86 32 processors simultaneously. The second version, described in chapter
4, can run on a x86 64 core on a host PC and on a x86 32 core on a Intel Single-
Chip Cloud Computer (SCC) simultaneously, connected by a Peripheral Component
Interconnect Express (PCIe) bus.

4

2 Background

2.1 Barrelfish

Barrelfish is an operating system built in the Systems Group at ETH Zurich. It is
built using a new architecture called “Multikernel” [BBD+09]. The kernel of the
operating system is very similar to that of a microkernel in that it only provides
the most basic functionality.

The multikernel differs from a microkernel based operating system in the way
it works on multicore systems. Instead of having the kernel span all cores and
protecting critical datastructures by locks from concurrent access, the multikernel
runs a separate kernel on every core in the system.

In Barrelfish, these kernels do not communicate in any way with each other. On
top of each kernel runs a service called “monitor”, which creates connections to
other monitors in the system and provides the basic functionality for applications
to create connections to local and remote applications, drivers and other services.

2.1.1 IDC / Flounder

In Barrelfish, applications communicate over the inter-dispatcher communication
(IDC) system. At its heart lies Flounder, an interface definition language. Flounder
enables application writers to easily define interfaces to their services. A Flounder
interface definition mainly consists of a number of definitions of messages.

From the interface definition, Flounder generates stub functions to call in an ap-
plication and also implementations for each backend that was selected for a given
application and architecture. At runtime, a connection is established using the
appropriate backend implementation depending on the availability of hardware fea-
tures such as shared memory, inter-processor interrupts and cache coherence.

After the binding process, the application can bind its own callbacks for receiving
messages. When receiving a message, the callback is called with the arguments sent
by the other side of the connection without the need of any conversion, extraction
from or other manipulation of data structures. While a connection is initiated by
a client, connecting to a server that exported the interface, the distinction between
client and server disappears when the connection is established.

For Flounder, there exist a number of backend implementations that have different
hardware requirements and purposes. For a list of the currently available backends,
see table 2.1.

5

2 Background

Name Description Requirements for connection end-
points

LMP Local Message Passing • Endpoints on the same core
UMP User-level Message Passing • Endpoints can share memory

• Cache coherence for shared
memory

UMP IPI User-level Message Passing
with inter-processor
interrupts (IPIs)

• Endpoints can share memory
• IPIs between endpoints

BMP Beehive Message Passing • Only available on the Beehive
processor

SIFMP SIF Message Passing • Protocol for communicating be-
tween Intel Single-Chip Cloud
Computer (SCC) cores and con-
nected host processors
• see section 4

Table 2.1: Flounder backends

2.2 SCC

2.2.1 Overview

The Intel SCC, codename Rock Creek, is an experimental chip developed by Intel
Labs 1. Its name comes from the architecture of the SCC, which resembles that
of a datacenter. The chip consists of 24 tiles, of which each contains two Intel
P54C cores. The tiles are placed in a 6x4 mesh, connected by routers on each tile
(see figure 2.1). The mesh is used for communication with other cores, connected
hardware and for memory access. The SCC does not provide cache coherence.

The SCC has 4 DDR3 memory controllers, placed on the edges of the mesh,
which control up to 16 GB of memory each, resulting in a maximum of 64 GB
system memory. Additionally, there is message passing buffer (MPB) memory on
each tile, giving each tile 16 kB of fast, local SRAM.

Each tile is connected to the mesh via a Mesh Interface Unit (MIU), that catches
accesses to memory and translates core addresses to system addresses. It acts as a
physical-to-physical memory mapping table and converts addresses using a lookup
table (LUT). The LUTs are normally pre-configured by the host PC, but entries
can also be changed at runtime by the operating system (OS). Entries in the LUT
can point to memory regions in any of the 4 memory controllers, local and remote
MPB memory, local and remote configuration registers and hardware interfaces.

1http://techresearch.intel.com/ProjectDetails.aspx?Id=1

6

http://techresearch.intel.com/ProjectDetails.aspx?Id=1

2.2 SCC

Figure 2.1: SCC Top-Level Architecture

The cores are numbered from 0-47, from bottom left to top right

From SCC External Architecture Specification, Revision 0.94

7

2 Background

On memory access, the MIU forges a packet with the help of the LUTs and
either sends it to a local destination (MPB, local configuration register) or forwards
it to the routher on the tile, which forwards it to the appropriate destination.
Destinations consist of the coordinates of a tile and a subdestination number (see
table 2.2).

Subdestination Number Comment
Core 0 0x0 Not a destination for memory R/W
Core1 0x1 Not a destination for memory R/W
CRB 0x2 Configuration Register
MPB 0x3 Message Passing Buffer
East port 0x4 @(5,0) and @(5,2) is DDR3 MC
South port 0x5 @(3,0) is SIF, @(0,0) is VRC
West port 0x6 @(0,0) and @(0,2) is DDR3 MC
North port 0x7 Nothing is on this port of any edge router

Table 2.2: SCC subdestination values

To facilitate the efficient use of MPB memory, Intel added an additional bit in
the page tables (virtual-to-core-physical) which marks memory as message-passing
buffer data. Memory which is marked as such will not be cached in the L2 cache and
cached as write-back in the L1 cache. The SCC instruction set architecture (ISA)
also contains a new instruction for use with this memory type. The instruction
CL1INVMB invalidates all cache lines in the L1 cache that are marked as message-
passing buffer data. If the instruction is called before modifications to the L1 cache
were written to memory, the data is lost.

The SCC is mounted on a field-programmable gate array (FPGA), which adds a
management console reachable via telnet, controllers for solid state disks (SSDs),
network access and a Peripheral Component Interconnect Express (PCIe) connec-
tion to a host PC. The host PC is used to initialize the hardware and to set up the
OS to run on the SCC.

The documentation for the SCC is incomplete and only covers the high-level
architecture of the chip. Most of the low-level details and functionality can only
be reverse engineered from the source code of Intel’s tools for the SCC 2. In the
following sections, I will cover what I could figure out and what I used for the
implementation of my driver.

2.2.2 Memory controller memory layout

Specified in the Intel SCC External Architecture Specification (EAS) are default
memory mappings for setups with 16, 32 and 64 GB of system memory, which are
used by the sccKit, the tools package provided by intel for use with the SCC. The

2http://marcbug.scc-dc.com/svn/repository/trunk/

8

http://marcbug.scc-dc.com/svn/repository/trunk/

2.2 SCC

current implementation of Barrelfish also assumes the default memory mapping for
16 GB of main memory (see table A.1).

Position Port Private Memory of Core #
0 x=0, y=0 West 0-5, 12-17
1 x=5, y=0 East 6-11, 18-23
2 x=0, y=2 West 24-29, 36-41
3 x=5, y=2 East 30-35, 42-47

Table 2.3: Locations of the four memory controllers

The default memory mapping is used for every core and each core’s private mem-
ory is mapped to a different system memory region and memory controller (see table
A.2).

2.2.3 Write-combine buffer

To reduce write accesses to MPB memory, the SCC uses a write-combine buffer. As
the functionality of this buffer is not covered by the Intel documents, it can lead to
unexpected results.

To figure out the exact functionality of the write-combine buffer, I did a number
of tests with the following setup:

The host PC booted an image of Barrelfish on the SCC and immediately started
checking a predefined cacheline for changes by issuing non-cacheable read requests
via the FPGA (see section 2.2.4). This way, the host PC was able to monitor the
data in main memory without any intervening caches. As soon as it detected a
change, it notified me of the changed data.

The image that was booted on the SCC was configured so that it would not use
any memory mapped as MPB. The boot process was configured so that it mapped
the frame with the predefined memory location and carried out the steps as in table
2.4. The numbers in the table indicate the order of the steps, while the letters
denote branches that were carried out separately with a clean setup each.

Results

The results of these tests led to the conclusion that the write-combine buffer works
on a complete cacheline as assumed and is activated if and only if the memory is
mapped as MPB memory, independent of the actual memory hardware type. The
write-combine buffer also acts as a cache for a single cacheline and is unaffected
by the CL1INVMB instruction. The buffer is flushed when a write to a different
cacheline mapped as MPB memory occurs or when each byte on the cacheline was
written at least once.

9

2 Background

Step # Description Success?

1 write part of the cacheline
2.a write the rest of that cacheline yes
2.b write another cacheline on the same page yes
2.c write to the stack no
2.d write to a global variable no
2.e write to a second page mapped as MPB yes
2.f do a CL1INVMB and write to a second page mapped as

MPB
yes

2.g do a CL1INVMB and write to a second page not mapped
as MPB

no

2.h do a CL1INVMB, write to a second page not mapped as
MPB and write to a second cacheline on the first page

yes

2.i write to a second page not mapped as MPB, that is on
a different memory controller

no

2.j write to a second page mapped as MPB, that is on a
different memory controller

yes

2.k read the whole cache line into a buffer, write the whole
cache line from the buffer

yes

2.l write part of the cacheline repeatedly no

Table 2.4: Write-combine buffer functionality test steps

10

2.2 SCC

2.2.4 FPGA / System Interface

The Rocky Lake or Copperridge FPGA is connected to the host PC as a PCIe
device and provides access to the SCC via the chip’s System Interface (SIF). The
host PC can send messages through the FPGA directly to routers in the mesh and
thus to every memory location on the SCC. While the messages used in the mesh,
called flits, are of variable length, the message sent to the SIF are 48 bytes long with
a header length of 16 bytes, leaving 32 bytes for payload. They can be transmitted
using programmed input/output (PIO) or the builtin direct memory access (DMA)
engine.

2.2.4.1 Host-SCC messaging

The FPGA has 2 FIFO queues for input and output. For these two queues, there
is one 32-bit status register (trnct4), divided into input and output part. Both
parts are 16 bits wide and consist of a 15-bit counter and an error bit. The counter
indicates the number of 8-byte words in the queue. The maximum number of bytes
in the queue can be read from a 32-bit read-only register.

To send a message, using either PIO or DMA, the input counter has to be checked
first to ensure that the queue is not full. When the output counter has a value greater
than zero, a message is pending and should be received by polling by the host PC.

SIF messages are sent to the appropriate destination by the FPGA using the
mesh on the chip through the SIF after the messages have been converted to flits.
Response flits are sent back to the SIF and converted by the FPGA to the 48-byte
message format.

Most of the information in this chapter is extracted and reverse-engineered from
the sources of Intel’s sccKit, the set of tools provided by Intel for use with the SCC,
since the host-SCC messaging is not documented in any way.

Message format The message format for all messages sent and received over the
SIF is the same. All messages are 48 bytes long, with a payload size of 32 bytes and
a header size of 16 bytes. Most messages don’t use the full 32 bytes for payload.

All message types in use work with an address alignment of 8 bytes. Not aligned
addresses in messages are truncated along the way and changed to the next lower
8-byte alignment border. The only exception from this is the WBI command, which
uses a 32-byte address alignment.

Read operations (NCRD command) do not use the payload part of the message at
all and their responses (DATACMP command) use only the first 8 bytes of payload
and bytes 8-15 for some additional data from the same cacheline. This additional
data, however, is not used by Intel’s sccKit, thus can not be deemed safe to use.

Write operations (NCWR command) use only the first 8 bytes to transmit data.
The NCWR command is the only operation in use that uses the byteenable header
field to determine which bytes should be written. Write operations do not generate
a response.

11

2 Background

Size Description

32 bytes Payload
byteenable 8 bits For write operations, each bit can be set indi-

vidually to indicate whether the byte should
be written. A pattern of 0*1+0* is expected.

tx ID 8 bits unused
source ID 8 bits The ID of the sender of the message. When

sending from the host PC, this is to be set to
0.

destination ID 8 bits The ID of the receiver of the message. When
sending to the SCC, this is to be set to 1.

address 34 bits The address field has to contain the system
address of the memory location to read or
write.

command 12 bits See table 2.6.
rck ID 8 bits The rck ID is of the form (y:4 x:4), where (x,

y) are the coordinates of the destination tile.
rck sub-ID 3 bits The sub-ID denotes the destination port of

the router (see table 2.2).
reserved 5 bytes

Table 2.5: Host-SCC message format fields

For a schematic view of the message format, see table A.3

Cacheline write operations (WBI command) use the full 32 bytes payload to write
a whole cacheline on the SCC.

For a description of all the header fields, see table 2.5.
For all message types and their description, see table 2.6.

PIO The FPGA provides an easy to use but slow method of transferring messages
with PIO. For message input, the 32-bit registers trnct2 and trnct3 have to be
written in turn, to effectively write 8-byte chunks of messages. Receiving messages
is done in a similar way, by reading the registers trnct0 and trnct1 in turn.

PIO has no setup time, thus no overhead when a single message is transmitted,
but it is not fast enough to transmit large amounts of data.

DMA engine The SCC board has a built-in Xilinx DMA engine that can be used
to read and write messages on the FPGA.

A DMA transfer is initiated by first resetting the DMA engine, configuring it by
writing configuration values to read or write configuration registers and starting it
by writing the correct bits to the control register.

12

2.2 SCC

Name Command # Description

DATACMP 0x04f Response with data
NCDATACMP 0x04e SysIF specific: NCRD Response with data
MEMCMP 0x049 Only Ack no data
ABORT MESH 0x044 Abort
RDO 0x008 Burst line fill (Read for ownership)
WCWR 0x122 Memory write (1,2,4 8 bytes)
WBI 0x02C Cacheline write / Write back invalidate
NCRD 0x007 Non-cacheable read (1,2,4,8 bytes)
NCWR 0x022 Non-cacheable write (1,2,4,8 bytes)
NCIORD 0x006 I/O Read (sent by SCC cores)
NCIOWR 0x023 I/O Write (sent by SCC cores)

Table 2.6: Host-SCC message format fields

Whether the transfer is completed can be checked in the control register, or by
waiting for an interrupt from the PCIe device. In the current implementation of
the sif driver (see section 4.2.3), the completion of the DMA transfer is checked
with the control register, doing a busy waiting until the transfer is finished. The
driver does not use interrupts at the moment, because the interrupts do not arrive
reliably (see paragraph DMA Interrupts).

For a complete set of steps for a DMA transfer, see tables 2.7, 2.8.
The information about the DMA engine was extracted from Intel’s sccKit and

from Xilinx XAPP1052 Bus Master DMA Performance Demonstration Reference
Design for the Xilinx Endpoint PCI Express Solutions, which seems to discuss the
DMA engine used on the SCC FPGA or a device that is very similar.

DMA Interrupts The Xilinx DMA engine on the Rocky Lake board can be con-
figured to send an interrupt when a DMA transfer is finished. Intel’s sccKit tools
use it in a very simple way to avoid busy waiting for the end of the transfer:

Before the DMA transfer is started, a variable is set to false and when the PCIe
device is initialized, an interrupt handler is registered that sets the variable to true.
After the initiation of the transfer, a loop is entered that is exited as soon as the
value in the variable is true.

I implemented the same pattern for the sif driver, but apparently some part in the
system could not keep up with the number of interrupts and only the first interrupt
was received by the driver. However, seemingly random added instructions to make
the driver slower, like printf or loops, could resolve the issue.

A small test showed that the kernel did get all the interrupts and attempted to
send them to the driver: Instead of waiting for the value of the variable to become
true, I modified the driver to do busy waiting on the control register until the transfer
was complete and not attempt to handle any interrupts. With this modification,

13

2 Background

Step Operation Register Operation Value

1 Assert initiator reset Write DCR1 0x00000001
2 De-assert initiator reset Write DCR1 0x00000000
3 Write hardware memory ad-

dress
Write RDMATLPA address

4 Write TLP size Write RDMATLPS TLP size
5 Write TLP count Write RDMATLPC TLP count
6 Write DMA start Write DCR2 0x00000001
7 Wait for interrupt (Check

for completion bit)
(Read DCR2) 0x00000100

Table 2.7: DMA transfer read steps

Step Operation Register Operation Value

1 Assert initiator reset Write DCR1 0x00000001
2 De-assert initiator reset Write DCR1 0x00000000
3 Write hardware memory ad-

dress
Write WDMATLPA address

4 Write TLP size Write WDMATLPS TLP size
5 Write TLP count Write WDMATLPC TLP count
6 Write DMA start Write DCR2 0x00010000
7 Wait for interrupt (Check

for completion bit)
(Read DCR2) 0x01000000

Table 2.8: DMA transfer write steps

14

2.2 SCC

the driver did receive all the interrupts, but after all the DMA transfers had been
completed.

As I could not get it to run without adding extra instructions in the DMA code,
I changed the driver to use busy waiting on the control register by default, but it
can be configured to use interrupts instead.

2.2.4.2 Benchmarks

I did some benchmarks on the SCC to test the speed of the PCIe connection to SCC
memory. I tested the time needed to read chunks of memory from SCC memory
from all memory controllers to see how transmission times increase with bigger
chunk sizes and to see if there are any differences between the connections to the
memory controllers. I also tested the time needed to read from MPB memory of
different cores to see if there are any differences between memory close to the SIF
and memory far away from the SIF.

All the benchmarks were done using DMA, PIO was not used.

Memory Controllers The benchmark of the memory controllers consisted of bulk
read procedures of 4, 8, 16, . . . 1024, 2048 bytes. Each test was completed with a
99.9% confidence interval for the mean of less than ±1%.

From the benchmarks I can conclude that the read operations over the PCIe bus
have a part that requires a constant amount of time and a part that is linear to
the size of the chunk read. From the data I can see that the constant part of the
transmission times takes about 50000 host clock cycles. For small chunk sizes (< 64
bytes) the constant part of the transmission time dominates the overall transmission
time and transmission times do not vary much (see figure 2.2).

From the benchmarks I can also conclude that reading from different memory
controllers does not change the time needed to read data.

MPB memory The benchmark of the MPB memory consists of read operations
of 4 and 4096 bytes from MPB memory of the cores 0, 4 and 46. All tests were
completed with a 99.9% confidence interval for the mean of less than ±1%.

Core 0 is the core that is booted first by default. Core 4 is the core that is closest
to the SIF and core 46 is one of the cores that is the furthest from the SIF.

The benchmarks show that the time for reading from MPB memory on different
cores does not differ or the difference is too small to be of any significance (see figure
2.3).

15

2 Background

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

4 bytes

8 bytes

16 bytes

32 bytes

64 bytes

128 bytes

256 bytes

512 bytes

1024 bytes

2048 bytes

C
lo

c
k
 C

y
c
le

s

Testcase

Bulk Transport Mean

MC at (x,y) = (0,0)
MC at (x,y) = (5,0)
MC at (x,y) = (0,2)
MC at (x,y) = (5,2)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

4 bytes

8 bytes

16 bytes

32 bytes

64 bytes

128 bytes

256 bytes

512 bytes

1024 bytes

2048 bytes

C
lo

c
k
 C

y
c
le

s

Testcase

Bulk Transport Median

MC at (x,y) = (0,0)
MC at (x,y) = (5,0)
MC at (x,y) = (0,2)
MC at (x,y) = (5,2)

Figure 2.2: SCC main memory bulk transport read times

16

2.2 SCC

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

4 bytes

4096 bytes

C
lo

c
k
 C

y
c
le

s

Testcase

MPB Latency Mean

MPB of core 0
MPB of core 4

MPB of core 46

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

4 bytes

4096 bytes

C
lo

c
k
 C

y
c
le

s

Testcase

MPB Latency Median

MPB of core 0
MPB of core 4

MPB of core 46

Figure 2.3: SCC MPB memory read times

17

3 Heterogeneous Support

3.1 Overview

To create an OS that is able to span different architectures, a few things are required:

• The OS must be able to start cores of different architecture.

• There must be a communication protocol that is independent of architecture
or performs the required conversions.

• The system must be able to start applications on cores of different architecture.

3.1.1 Boot Process

In Barrelfish, the booting of all cores that should run a cpu driver happens during
the boot process of the bootstrap core. Cores can at the moment not be added to the
system at runtime and so the boot process is important in creating a heterogeneous
system. For this reason, I will first describe the startup process of Barrelfish in a
homogeneous system.

1. On core 0 the bootloader starts and loads all modules that are necessary for
the system to start over the network into memory. After that, the bootloader
starts the kernel with command line arguments that indicate to the kernel
that it runs on the bootstrap core. Part of the command line arguments is
the memory address of a data structure containing records of all modules that
were loaded by the bootloader.

2. The kernel initializes the cpu and relocates itself to a different virtual memory
region.

3. Following that, the kernel starts init. Init starts the monitor and mem serv
and helps them connect to each other.

4. When the monitor on the bootstrap core starts, it first connects to mem serv
and initializes its rpc service. It then spawns the nameservice, chips, followed
by all the modules that have the “boot” command-line argument specified in
the bootloader’s config file.

18

3.1 Overview

5. One of the “boot”-modules is spawnd. Spawnd provides the service to start
processes and is therefore essential for the system if programs should be
spawned after the boot process is over. On the bootstrap core, spawnd also
starts the boot process on other cores. For each core it decides to boot (spec-
ified either by command-line arguments or detected automatically), spawnd
sends a boot request to its local monitor and waits until a spawnd process has
started on the new core and registered itself with the nameservice.

6. When the bootstrap monitor receives a boot request, it copies the Executable
and Linkable Format (ELF) file of the kernel to a free memory region and
initializes the binary. It allocates a new frame for a UMP connection and
passes its memory address to the new core as argument.

On the cores booted by spawnd the bootprocess is slightly different:

1. After the kernel is booted, it does not spawn init, but directly the monitor.

2. Before the monitor can provide its services, it needs a connection to the boot-
strap monitor. It does that by creating a UMP connection with a frame whose
address it was given as a command-line argument. The frame is also known
to the bootstrap monitor, which creates the other endpoint of the UMP con-
nection.

3. Once the connection is established, the monitor on the app core can continue
its initialization by connecting to mem serv first.

4. To start its own local spawnd, the monitor requests the image of spawnd from
the bootstrap monitor.

3.1.2 Communication

When a connection between two cores is made in Barrelfish, the Flounder backend
used is UMP. Because connections spanning multiple cores do not have the possi-
bility to pass message arguments in registers, UMP uses a shared frame to transmit
the messages.

When a process sends a message over a UMP connection, the process calls the
function for the specific message. This function copies the message arguments to
a connection-specific struct and calls the marshalling function. The marshalling
function writes message packages into a ringbuffer that is located in the shared
frame. It takes each argument and writes it in an array of pointer-sized words or
splits and combines arguments to make best use of the available space. This array
fills the complete space available for payload in a message package. On the other
side of the connection, the unmarshalling function takes these words and builds the
message arguments out of them.

19

3 Heterogeneous Support

Capabilities are handled separately. The reference to a capability is sent to the
monitor so that the monitor can send the actual capability to the monitor of the tar-
get processor and the other endpoint can receive the reference to its local capability
from the monitor.

3.1.3 Application Start

To start a new process, regardless of the target core, the starter process uses the lib-
barrelfish. This library provides convenience functions to communicate with spawnd,
the spawn daemon. By using these functions, the starter process connects to spawnd
on the target core and sends a message to load and run a certain binary. Part of
this command is the env array, which contains all the environment variables set in
the starter process, like PATH. The PATH variable is also used by the library to
search for the binary of the given name, so that it can send spawnd the path to it.

Spawnd then connects to ramfs to look for a binary that matches the given path,
loads it using either a shared frame for bulk transport or Flounder messages, and
runs the process on its core.

3.2 Implementation

3.2.1 Cross-Architecture Boot

In the architecture of Barrelfish, the points where the implementation depends on
the architecture are few. They are mainly the locations where a binary is selected,
transmitted or installed or the actual hardware is used and configured. This greatly
helped in developing a version of Barrelfish that is able to span x86 64 and x86 32
cores.

To get a heterogeneous OS, I had to change the interface of the monitor, so that
spawnd can not only select which cores to boot, but also tell the monitor of which
architecture they are. Similarly, the monitor on the new core needs to be able to
tell the bootstrap monitor which binary of spawnd it requires, which I could also
accomplish with a change of the monitor’s interface.

3.2.2 Cross-Architecture Communication Protocol

The marshalling process works very well if both endpoints are of the same architec-
ture, but if they are different, this ceases working, because the words in the payload
array might not have the same size due to size differences of pointers and thus
the arguments may be grouped differently. Also, arguments may themselves be of
different size, like Barrelfish’s error values, which are pointer-sized.

For this reason, I decided that when communicating between cores of different
architecture, UMP should use the same word size for grouping message arguments
and the message arguments should be converted to architecture-independent types.

20

3.2 Implementation

As I was working with x86 32 and x86 64, the obvious choices for payload array
word sizes were 64 bit and 32 bit. I benchmarked versions of UMP with 32 bit word
sizes and 64 bit word sizes and compared their speed to the original implementation.
Additionally I created a version of UMP that splits, combines and groups words as
if it would write 32 bit words, but combines them if necessary to write pointer-sized
words, i.e. on x86 64 it combines two 32 bit words and writes a 64 bit word to
memory, because I wanted to be able to use the optimized 64 bit capabilities of the
x86 64 architecture.

As can be seen in figures 3.1 and 3.2, the implementation that uses pointer-sized
words to write the marshalled arguments into memory, but groups them as 32 bit
words in any case, is the fastest and so chosen for my heterogeneous implementation.

The greatly increased transmission times of the 64 bit version on x86 32 for the
payload32 16 testcase, I can’t explain. The message uses two message packages and
should, extrapolated from the payload32 8 testcase, not be significantly slower than
the original implementation.

Also, the increased transmission times of the 64 bit version on x86 32 for the
empty testcase is unexpected, because apart from the word sizes and the resulting
change in the marshalling functions, nothing was changed and this testcase should
not do any marshalling.

The increased transmission times of the 64 bit version on x86 32 for the buffer
testcase can be explained by the functioning of the buffer marshalling function. This
function reads individual bytes from the buffer, ORs them together in a register and
writes this word into the payload array. With the 32 bit sized registers available on
x86 32, these operations might take more time when a 64 bit word is manipulated.
However, I did not test if this is the true source of the increased transmission time.

To be able to correctly transmit architecture-dependent types, every message ar-
gument is converted to its architecture- independent counterpart and saved in a
struct that is very similar to the usual struct UMP uses for storing the message ar-
guments, but stores architecture-independent types. The marshalling that is called
is not the regular marshalling function, but one that is aware of the possibly differ-
ent sizes of the new types and marshalls the message arguments accordingly. On
the receiver side, I did the same, so a different unmarshalling function is used and
the arguments are converted to the architecture-specific types before the registered
callbacks are called.

3.2.3 Cross-Architecture Application Start

When a new process should be started on a core of different architecture, spawnd
on the target core has to load the binary of the correct architecture. If the starter
process calls the libbarrelfish, the library uses the PATH variable of the starter
process to look for the binary. When the architecture of the source ant target
cores is not the same, libbarrelfish looks in directories with binaries of the wrong
architecture type. It may fina a binary with the correct name and instruct spawnd
to run it. This of course fails and the starter process receives an error message.

21

3 Heterogeneous Support

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Mean x86_32

32bit words on x86_32
64bit words on x86_32

32bit words aligned to 32bit on x86_32
Heterogeneous-ready on x86_32

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Median x86_32

32bit words on x86_32
64bit words on x86_32

64bit words aligned to 32bit on x86_32
Heterogeneous-ready on x86_32

Figure 3.1: Transmission times for different payload array word sizes on x86 32

22

3.2 Implementation

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Mean x86_64

64bit words on x86_64
32bit words on x86_64

64bit words aligned to 32bit on x86_64
Heterogeneous-ready on x86_64

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Median x86_64

64bit words on x86_64
32bit words on x86_64

32bit words aligned to 32bit on x86_64
Heterogeneous-ready on x86_64

Figure 3.2: Transmission times for different payload array word sizes on x86 64

23

3 Heterogeneous Support

A workaround for this is to supply libbarrelfish with the full path to the binary
instead of only its name. This way, it ignores the PATH variable of the starter
process and loads the correct binary.

This is only a temporary solution and if heterogeneous systems should become a
normal part of Barrelfish, a more robust and flexible solution is needed.

A possible solution would be to add paths to the PATH variable that contain
binaries for other architectures. The libbarrelfish would then be able to find a
binary that matches the name as well as the architecture. The downside of this
would be that the starter process needs to know the architecture of the target core
and be able to search for the binary, but this may not be possible if the binaries are
stored on a file system only accessible by the target core.

To avoid this problem, it may be possible to move the searching from the libbar-
relfish to spawnd and let the target core decide whether a binary matches the core’s
architecture.

Another possibility would be to standardize binary paths. At the moment all
binaries for a certain architecture are in the directory /<arch>/sbin/. A naming
scheme that is more flexible could be created so that searching for a binary would
become faster, because less directories have to be checked and less binaries have to
be checked for matching architectures.

3.3 Evaluation

The heterogeneous implementation of UMP is slower than a pure UMP implemen-
tation, as can be seen in figures 3.1 and 3.2. This is expected, as the heterogeneous-
ready implementation has an overhead with converting and correctly aligning mes-
sage arguments to an architecture-independent format. The overhead in terms of
transmission speed is about 1%-4% for messages transmitted between x86 32 cores
and about 5%- 12% for messages transmitted between x86 64.

The transmission times of heterogeneous connections between x86 64 and x86 32
cores are higher than the times of homogeneous connections between two x86 64
cores but lower than the times measured for homogeneous connections between two
x86 32 cores. It is expected that the heterogeneous connections are not as fast
as connections between x86 64 cores, as those connections do not perform conver-
sion, but that is not the main contributor to the great difference between those two
connections. As half of the work for the heterogeneous connection is done on the
x86 32 core, which does not have the same possibilities in terms of instructions and
number of registers as the x86 64 core and which therefore is slower, the hetero-
geneous connection speed is between the two homogeneous connection speeds (see
figure 3.3).

The speed could probably still be increased slightly with an optimized marshalling
process that writes a 64 bit chunk of a message argument as a 64 bit word directly
instead of splitting it into two 32 bit words and combining them again for writing
into the payload array.

24

3.3 Evaluation

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Mean

Original implementation on x86_64
Original implementation on x86_32

Heterogeneous between x86_64 and x86_32

 1000

 1500

 2000

 2500

 3000

 3500

 4000

em
pty

buffer

payload32_8

payload32_16

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Median

Original implementation on x86_64
Original implementation on x86_32

Heterogeneous between x86_64 and x86_32

Figure 3.3: Transmission times of a heterogeneous compared to homogeneous con-
nections

25

3 Heterogeneous Support

3.4 Future Work

3.4.1 Endianness

The heterogeneous version of UMP is not completely ready for connections between
different endiands yet. It is at the moment optimized and tested for little endian
and may also need some adaptions for connections between big endian architectures
only.

In any case, when a new architecture is to be supported by heterogeneous UMP,
regardless of the architecture’s endianness, new conversion functions have to be
added so that variables on the new architecture can be converted to architecture-
independent types.

3.4.2 Capabilities

Capabilities are at the moment not converted in any way when transmitted between
cores of different architecture. The conversion of capabilities would have to be done
in the monitor as that is the only place in the connection where the actual capability
is available rather than a reference to it. Between x86 64 and x86 32, capabilities
do not require any conversion, because the datastructures have the same types on
both architectures and also have the same representation in memory. This is also
the reason why I did not concentrate on that topic any further, but decided to begin
working on a connection to the SCC.

However, even if capabilities can be transmitted without conversion, they are not
necessarily valid on another core. Frame capabilities from a x86 64 core for example
are not valid on an x86 32 core if the frame contains memory locations above 4GB.
This would probably have to be resolved with the help of the skb.

26

4 SIFMP - SIF message passing

The Intel SCC is a research chip developed to give researchers the possibility to work
with an architecture that might be the future of all processor chips. Specifically the
unavailability of cache coherence and the non-shared memory impose restrictions
on OSs and applications that run on this kind of processor. (See chapter 2.2 for
more information on the SCC)

As Barrelfish already treats each core in a system as separate entities rather than
a multi-threaded environment, Barrelfish should be perfectly suited to run on such
a kind of chip. A version of Barrelfish that runs as one OS, spanning the whole chip
already exists, so it seems natural to try and connect the SCC and the host PC to
create an OS that spans both.

In this chapter I will describe the functioning of a communication protocol that
enables processes to talk to each other even if they are on opposite sides of the PCIe
bus that connects the SCC to the host PC.

4.1 Overview

For the communication protocol, there were a few requirements:

1. The SCC is attached to the host as a PCIe device, so it needs a device driver
to access and configure it. The communication necessarily involves the driver.

2. The communication protocol should be integrated into the existing IDC frame-
work, i.e. an extension to Flounder.

3. As the communication between the host and SCC cores is part of the boot
process, a communication channel has to be opened without an external com-
munication channel or manual configuration.

4.2 Implementation

The protocol used to connect processes on the host PC to processes on the SCC is
called SIFMP, for SIF message passing. sif is the name of the driver for the SCC
FPGA and stands for System Interface, the port on the SCC that connects it to
peripheral devices.

27

4 SIFMP - SIF message passing

4.2.1 Possible Communication Schemes

For communication protocol across a PCIe bus, a number of different approaches
seemed possible, which I will describe in this section.

4.2.1.1 Double Proxy

The Double Proxy version of SIFMP uses a driver on both sides of the PCIe bus.
Processes that want to create a connection to another process on the other side of

the bus allocate a channel from the driver and register the connection to the driver
as the notification channel.

Part of the allocated channel is a frame the allocating process gets from the driver,
that is used as ringbuffer as with UMP. When the process sends a message, it writes
the message in the ringbuffer and sends a notification to the driver, which copies
the message to a similar frame on the other side of the PCIe bus and forwards the
notification to the receiver of the message.

The process allocating a channel receives a channel identification number, which
is sent to the other endpoint of the SIFMP connection so the other process can
request its local frame for the ringbuffer and register a connection to the driver as
notification channel.

This version is very symmetric from the processes’ point of view, but uses two
frames and two non-SIFMP connections for every SIFMP connection.

4.2.1.2 Double Proxy, Notificationless

This version of a communication scheme is very similar to the Double Proxy version,
but does not use notifications.

When a new SIFMP channel is created, it is normally registered on the default
waitset. A channel registered on a waitset can either be idle, polled or pending.

If a channel is in idle state, there are no pending messages on that channel and
the channel will not be checked when a message handler loop for that waitset is
entered.

In pending state, a channel does have pending messages, which will be delivered
as soon as the waitset is processed.

Channels marked as polled may have channels pending, but they are not marked
as pending, because the channel state is not updated when a message arrives. When
checking the waitset for pending messages, each channel marked as polled has to be
checked individually.

In the Double Proxy version, SIFMP channels are registered on a waitset as idle,
because they are triggered by notifications sent by the sif driver. A version without
the notifications needs to register the channels as polled. On the host PC this
simply results in a protocol that is more similar to UMP than to UMP IPI. On the
SCC however, UMP does not work, because there is no cache coherence for shared
memory, so the ringbuffer frames either have to be mapped as uncached or a method
to cause a cache flush has to be added, which is very similar to a notification system.

28

4.2 Implementation

Also, there is an additional overhead for at least the host part of the sif driver,
as it needs to check all channels manually for new messages. In the Double Proxy
version, the driver has to poll at most one channel per process that uses SIFMP
connections. For system services that may have a big number of SIFMP connections
such as chips, this difference could become significant.

4.2.1.3 Double Proxy, IPI Notifications

This version of SIFMP is very similar to the Double Proxy version, but instead of
using Flounder channels and messages to notify applications of pending messages
on SIFMP channels, it uses IPIs to notify channels of pending messages, much like
UMP IPI does.

This results in a protocol that is largely the same as the Double Proxy version,
but with more restrictions on the hardware. SIFMP may be faster when using IPIs,
so this is a tradeoff between fewer requirements and speed.

It would probably be relatively easy to add IPIs as an optional notification mech-
anism to the Double Proxy version.

4.2.1.4 Single Proxy

While the three previously discussed versions of SIFMP use a driver on both sides
of the PCIe bus, this possible implementation uses only one driver part on the host.

In this version, the host driver does not only trigger one channel on the SCC with
a message in the MPB and an IPI, which it does in the Double Proxy version, but
by using that mechanism for every channel individually. The channel number for
the MPB message and the core number to trigger the kernel on the right core have
to be passed to the host endpoint as part of the binding process via the monitor.

The host part of the driver is still responsible for copying new messages and
updating the ringbuffers, but updates to ringbuffers, i.e. new messages can only be
detected when the driver checks every one of them individually, which results in a
huge overhead in the form of a lot more read accesses over the PCIe bus.

4.2.1.5 Encapsulation

A completely different approach is to use the Flounder channel of an application to
the sif driver as a transport medium and encapsulate and encode SIFMP messages
in other messages, e.g. LMP or UMP messages.

When sending a message, the SIFMP implementation encodes the message and
sends it to the driver, along with a SIFMP channel identifier. The driver then
sends the encoded message to the other part of the driver, which forwards it to the
application. The SIFMP implementation at the destination decodes the message
and delivers it to the application.

This idea is independent of the the notification mechanism and the number of
proxies used.

29

4 SIFMP - SIF message passing

SCCHost

App 1 App 2sifsif PCIe

Frame

Frame

Frame

kernel

Frame1

2

3

 4

5

6
7

8

9

10

Figure 4.1: Sending of a message from host to SCC

The encapsulation of messages into SIFMP messages requires the use of a message
header inside the payload to identify the channel and the arguments, which reduces
the available payload space for actual arguments. But such an encapsulation scheme
uses much less space than the mechanism described in the previous versions, as
each application needs at most one frame for SIFMP messaging, namely for the
connection to the driver.

(This version has some similarities with a routing scheme that I will describe in
section 4.4.5.)

4.2.2 SIFMP Communication

Of the versions described previously, the Double Proxy implementation seemed to
be the one that is most practical for a first implementation of SIFMP. For a commu-
nication protocol that crosses a PCIe bus and possibly has high round-trip times,
notificationless communication and the accompanying busy waiting did not seem
appropriate. The version with IPIs seemed too restrictive for this protocol. The
Single Proxy version would have been much more complicated, because it is not as
symmetric as the Double Proxy version, which unnecessarily complicates the library
for SIFMP messaging. The Encapsulation strategy would have used up parts of the
payload for additional headers, which I thought undesirable, especially when large
amounts of data are transmitted.

With the Double Proxy version the SIFMP protocol is very similar to UMP IPI.
It uses frames as ring buffers and uses a separate channel to notify the receiver of a
pending message. The separate channel is an IDC connection to the sif driver on
the host and SCC and a connection between the two driver parts.

Sending a SIFMP from host to SCC involves a number of steps (see figure 4.1):

1. The application on the host writes a message into a ringbuffer, a frame shared

30

4.2 Implementation

SCCHost

App 1 App 2sifsif PCIe

Frame

Frame

Frame

kernel

Frame 1

2

 345
8

7

6

Figure 4.2: Sending of a message from SCC to host

with the host part of the sif driver.

2. The application on the host sends a notification to the sif driver, using any
protocol available between the two processes.

3. The host part of the sif driver receives the notification and updates the ring-
buffer belonging to the same channel on the SCC with the new messages.

4. The host part of the driver writes a notification into a ringbuffer, a frame on
the host.

5. The host part of the driver updates a ringbuffer in a frame on the SCC, known
to the SCC part of the driver, with the notification.

6. The host part of the driver writes a notification into the MPB of core 0 on
the SCC, protected by the test-and-set lock of that core and triggers an IPI
on core 0.

7. The kernel on core 0 sends a LMP message to sif to notify it of a new message
on its channel to the host and to trigger the receive function of that channel.

8. The SCC part of the driver receives the notification from the host part . . .

9. . . . and sends a notification to the application on the SCC.

10. The application checks the ringbuffer and receives any pending messages on
the channel.

Sending of a SIFMP message from SCC to host is different internally, but works
exactly the same from an application’s perspective (see figure 4.2):

31

4 SIFMP - SIF message passing

1. The application on the SCC writes a message into a ringbuffer, a frame shared
with the SCC part of the driver.

2. The application on the SCC sends a notification to the driver, using any
protocol available.

3. The SCC part of the driver receives the notification from the application and
writes a notification into a ring buffer, a frame in SCC memory that is known
to the host part of the driver.

4. The host part of the sif driver periodically checks for new notifications in the
ringbuffer from the SCC part and copies the notification to a ringbuffer in a
frame on the host.

5. The host part of the driver receives the notification.

6. The driver updates the ringbuffer in the frame on the host belonging to the
channel with the new message.

7. The host part of the driver sends a notification to the application on the host.

8. The application on the host receives the message from the application on the
SCC.

4.2.3 SIF

SIFMP uses a two part driver to set up communication channels, to transmit the
messages and to notify channel endpoints of new messages. The driver, called
sif, consists of a host part, running on one of the host PC’s cores and a SCC
part, running on core 0 (tile 0,0) on the SCC. The host part is responsible for
setting up and booting the SCC, transmitting messages, sending notifications to
endpoints on the host and receiving notifications for endpoints on the SCC. The SCC
part is mainly for sending notifications on its side of the PCIe bus and forwarding
notifications for the host.

The two parts are connected by a manually set up SIFMP channel, which they
use to coordinate and to forward notifications.

sif implements two interfaces, sif and sif mgmt. sif is the interface that most
applications use. It provides the following services:

create and register chan: This call creates a new SIFMP channel and registers the
caller as the endpoint for future notifications on this channel. In the reply, the
caller receives channel identification numbers for both endpoints and a frame
that is to be used for the ringbuffer.

get and register chan: With this call an application can get the frame for the
ringbuffer of a SIFMP channel that was already created by the other endpoint
of the channel. The caller is also registered as the endpoint for notifications
on this channel.

32

4.2 Implementation

register chan: By calling register chan, an application can register itself as the
endpoint of a channel of which it has already received the identifier and the
ringbuffer frame capability, like the bootstrap monitor on the host and the
monitor on core 0 on the SCC for the bootstrap channel.

notify chan: This call is used by the channel endpoints to notify the driver of a
new message and also by the driver to notify the endpoint.

sif mgmt is the interface that is used by the monitors to boot the SCC and set up
the connection between bootstrap monitor and the monitor on core 0 on the SCC.
It provides the following calls:

map default lut: This function call causes the driver to set the LUTs entries to
the default mapping (see appendix A). This call is only available on the host.

boot scc: By calling this function, the bootstrap monitor can issue a complete
reboot of the SCC. All the cores’ configurations are reset and the cores halted.
A new image is then copied to the SCC and core 0 started. This call is only
available on the host.

get intermon chan: With get intermon chan, the bootstrap monitor and the mon-
itor on core 0 on the SCC get the channel between them. This channel is
created as part of the driver’s initialization procedure.

dump videomem: This call dumps the contents of core 0’s log memory region into
a file. It is mainly used for debugging purposes.

scc bind notification: This call is used to configure the driver and register an
endpoint for the IPI that the host part of the driver sends to notify the SCC
part. This call is only available on the SCC.

4.2.3.1 Host Part

The host part of the driver serves as the service endpoint for applications on the
host. It implements the sif and sif mgmt interfaces.

The host part is mainly responsible for allocating frames to be used as ringbuffers
in main memory and to copy messages to and from SCC memory. Also during the
boot process it is responsible for configuring the hardware and copying the binary
image into SCC memory.

To check for new messages on the channel from the other part of the driver, it
uses a separate thread in which the ringbuffer is monitored for new messages. If a
new message was detected, the channel is triggered and the main thread can receive
and handle the message.

33

4 SIFMP - SIF message passing

4.2.3.2 SCC Part

The SCC part of the driver is mainly responsible for allocating frames to be used as
ringbuffers in SCC memory. It allocates the frames from the shared memory region
on memory controller 3.

Whenever a UMP IPI connection is created on the SCC, the originator of the
connection allocates a frame of its core’s shared memory. The four times 16 MB
of shared memory available with the standard mapping is divided into chunks of 1
MB size. Each core can allocate frames in its 1 MB share of shared memory. With
48 cores, this leaves 16 MB of shared memory unused, which is now used by the sif
driver for connections to the host.

4.2.4 Bootstrapping

Since channels between cores, their monitors and spawnd are part of the boot pro-
cess, and channels between host cores and SCC cores require the sif driver, the
driver is part of the boot process and has to be tightly integrated.

4.2.4.1 SIF

On the host, sif is started by the monitor, but is otherwise a normal process,
because it is started only on request when it is needed, which is when spawnd sends
a boot request. This can only happen when system services like chips are already
available.

On the SCC however, the driver is one of the first processes to be started. When
sif is started, there is no connection to the host yet. When Barrelfish applications
are started, normally libbarrelfish is initialized. Part of the initialization procedure
of libbarrelfish is to connect to various services like the nameservice and serial.
With no connection to the host, this is not possible and so sif has to start with an
uninitialized version of the library and do the initialization of needed parts like the
IDC system and a connection to the memory service themselves.

4.2.4.2 Monitor

Oh the SCC, the boot process is a little different from the boot process on “classical”
x86 cores. Because the cores all have private physical address space, each core needs
to start its own instance of a memory service. To do that, init is always started as if
it runs on the bootstrap core, even if it doesn’t. The distinction between bootstrap
core and app core is made only in the monitor. The bootstrap core initializes the
system and starts vital system services. When the SCC is started as an extension
of the host, the first core to be started is neither bootstrap core nor application
core. It behaves like an application core in terms of starting system services, but
it does not connect to another SCC core. As the boot process is largely the same
as for an application core, I decided that the first core should also be started as an
application core, but with a slightly different boot procedure. I then added a flag to

34

4.2 Implementation

the arguments that are given to the monitor on the SCC that allows it to determine
whether it was started by the host and if so, choose a different initialization path.

During the boot process of an application core, the monitor requests the image
of spawnd from the bootstrap monitor. Instead of transferring the whole image via
messages, the bootstrap monitor sends the size and memory location of the image
as a reply and the monitor on the application core can copy it to its own memory
region where it should be executed. If the cores on the SCC request the image of
spawnd from the bootstrap monitor, they get replies that are meaningless for them,
so I had to reroute the request to a loopback function. Now the requests for spawnd
images are answered by the monitor on core 0 on the SCC. The image location
returned by this core is also valid on all other cores, because the same image is
loaded for all cores initially.

I added a similar loopback for the UMP binding functions, because in the cur-
rent version of Barrelfish, there are no checks whether UMP connections between
cores are possible and the monitors would support the binding attempt using UMP.
The loopback for the binding functions simply return an error to indicate that a
connection with UMP is not possible and the application tries the next protocol.

4.2.4.3 Inter-SIF

The connection between the two driver parts is created in a way that is very similar
to the way the inter-monitor UMP channels are created. The host part of the
driver, like the bootstrap monitor, passes the memory location of the frame for the
ringbuffer to the kernel of the new core as a parameter. The kernel then passes the
information on to the monitor, which forwards it to sif. The driver on the SCC
then allocates the specified memory region and initializes the connection.

With UMP, this is enough to fully establish a connection, but the SIFMP con-
nection is at this point one-sided. Messages can be sent from the SCC to the host,
but not in the other direction. The driver part on the host first needs to know the
channel number to send with the IPI.

The monitor on the SCC sends this channel number, together with the capability
for it to the driver using the sif mgmt interface. The driver sends back a capability
for the endpoint so the monitor can register it as the endpoint for the IPI channel.
The first message that is sent between the two driver parts goes from the SCC to
the host and it is part of a three-way handshake. Part of the first message is the
channel number for the IPI. The messages are also used to set up the inter-monitor
channel between the bootstrap monitor and the monitor on core 0 on the SCC.

When the handshake is done, the two driver parts can communicate over the
PCIe bus. At this point, they export their sif service.

4.2.5 RPC Clients

When two messages in a Flounder interface belong together as call and response,
they can be grouped as a remote procedure call (RPC). Flounder still generates two

35

4 SIFMP - SIF message passing

separate messages and they can be used separately with the same semantics as a
call and a response, but Flounder is also able to generate an additional connection
interface, the RPC client. RPC clients are a way to use connections conveniently
in Barrelfish. RPC clients group the call and the receiving of the request together
as one function for the application to call, so the application does not have to care
about asynchronous messages.

RPC clients are a meta-interface to Flounder connections. They wrap existing
connections and place them in their own waitset. When an application invokes a
RPC function on the RPC client, the client sends the call message through the
wrapped connection and waits on the waitset of the RPC client for the response.
When the response is received, the RPC client can return the values sent in the
response.

The extra waitset allows the RPC client to block until the response is received,
without the possibility to trigger other message callbacks. This makes RPC clients
much easier to use in applications where a deadlock could occur.

For SIFMP connections, the possibility to receive messages while waiting for a
response is crucial, since message notifications are sent through Flounder connec-
tions. This means that the connection to sif must always be in the same waitset as
the SIFMP connection itself. For this reason, every SIFMP connection has its own
connection to sif, which is always placed in the same waitset as the connection.

4.3 Evaluation

The resources needed by a SIFMP connection can not completely be described with
an absolute number, because some of the resources are used by more than one
connection or even more than one application.

Nevertheless, the usage of resources can be compared to UMP/UMP IPI, which
has a very similar concept.

UMP/UMP IPI SIFMP

1 frame 2 frames (1 on the host, 1 on the SCC)
1 IPI channel (only UMP IPI) 1 connection to sif
1 waitset entry 1 waitset entry

1 process (driver)

4.3.1 Benchmarks

I did some benchmarking of the SIFMP by using 7 testcases from the bench/floun-
der stubs collection of messaging benchmarks in the Barrelfish repository. All the
benchmarks were completed with a 99.9% confidence interval for the mean of ±1%
or less. The following benchmarks were executed:

empty tests the speed of a null-message

36

4.4 Future Work

buffer tests the speed of a 1-byte long buffer transmission

payload32 (1,2,4,8,16) test the speed of transmitting 1, 2, 4, 8 and 16 32bit integers

As is to be expected from a communication channel that crosses the PCIe bus,
SIFMP is much slower than UMP (see figure 4.3). For SIFMP, the transmission
time of a buffer is the same as the transmission time of the empty message or a
message which can be transmitted in one package. With UMP, this is not the case
and I can conclude that the marshalling time of SIFMP messages is a minor factor
in the speed of SIFMP (see figure 4.4).

It can also be seen that the transmission time of messages that use more than
one package to transmit is not proportional to the number of packages. This comes
from the functioning of the buffer updating function in the driver, which becomes
active after each received notification, but copies as many messages as available
each time, so some messages are copied before the corresponding notification has
arrived at the driver.

4.4 Future Work

4.4.1 Multicore SCC

My version of SIFMP was only tested with a single core running on the SCC, as
support for multiple cores on the SCC did not work at the time of my work.

When multiple cores should be started, great care has to be taken in creating
inter-monitor connections. If further SCC-cores should be started by the host, the
boot command should be forwarded to the first core on the SCC and executed there
or new cores need their own endpoint of sif.

4.4.2 Data Prefetch

The number of read accesses can be reduced by reading greater chunks of memory
from the SCC. This creates a tradeoff between the number of read accesses and the
time each read operation takes. The optimal size for each read access is something
that has yet to be determined.

4.4.3 SCC-Host messaging

Apparently, a way to actively send a message from the SCC to the host exists. The
Linux-tools and -drivers provided by Intel for the SCC make use of a mailbox that
appears to be a specific memory region in the SIF on the SCC. The Linux-driver
writes data into it, which then apparently appears as pending message in the PCIe
device visible on the host.

This mechanism could be used to reduce the number of needed read operations
over the PCIe bus by changing the periodic check for new messages in SCC memory

37

4 SIFMP - SIF message passing

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

em
pty

buffer

payload32_1

payload32_2

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Mean

UMP connection x86_64-x86_64
SIFMP connection x86_64-scc (Host cycles)
SIFMP connection scc-x86_64 (SCC cycles)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

em
pty

buffer

payload32_1

payload32_2

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Median

UMP connection x86_64-x86_64
SIFMP connection x86_64-scc (Host cycles)
SIFMP connection scc-x86_64 (SCC cycles)

Figure 4.3: Comparison of SIFMP with host UMP connection (logarithmic scale)

38

4.4 Future Work

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

em
pty

buffer

payload32_1

payload32_2

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Mean

UMP connection x86_64-x86_64
SIFMP connection x86_64-scc (Host cycles)
SIFMP connection scc-x86_64 (SCC cycles)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

em
pty

buffer

payload32_1

payload32_2

payload64_4

payload64_8

payload64_16

C
lo

c
k
 C

y
c
le

s

Testcase

Flounder Stubs Median

UMP connection x86_64-x86_64
SIFMP connection x86_64-scc (Host cycles)
SIFMP connection scc-x86_64 (SCC cycles)

Figure 4.4: Comparison of SIFMP with host UMP connection (linear scale)

39

4 SIFMP - SIF message passing

to a check for pending messages in the PCIe device or even by completely replacing
the SCC-host inter-sif channel with the mailbox. However, this functionality is
undocumented and I did not have time to test it.

4.4.4 IPI

Like UMP and UMP IPI, SIFMP could be extended by the possibility to use IPIs
instead of the connection to the sif driver to deliver notifications.

With this, the resources needed by each SIFMP connection could be reduced, as
instead of using a whole UMP IPI channel, only one IPI channel would be needed
for a SIFMP notification connection.

Additionally, SIFMP connections might become faster when no additional con-
nection and its unmarshalling process is involed.

4.4.5 Routing

SIFMP in its current state provides the possibility to connect processes on the
host with processes on the SCC. If the capabilities of Barrelfish are enhanced to
also span other peripheral devices like graphic cards and network cards, Barrelfish
will probably need a routing infrastructure that not only allows the creation of
connections with fixed protocols but also with “concatenations” of connections and
protocols.

When Barrelfish is enhanced in such a way, the sif driver can be changed to
provide routing capabilities. The driver would then become a gateway to the SCC
(and to the host from the SCC).

40

5 Protocol Selection

During my work on SIFMP, I saw the need to change the way Flounder backends
(protocols) are selected when a new connection is created in Barrelfish. In this
chapter I will describe the problems with the old system and a first implementation
of an improvement.

5.1 Overview

When a new connection is created in Barrelfish, the initiator of the connection
has to chose the Flounder backend for this connection. In the old version of the
initializer code generated by Flounder, the initiator would try each protocol in a
trial and error method. The first connection attempt would be made with LMP. If
that fails, it would try UMP IPI if available on the architecture, then UMP, BMP
and SIFMP.

This works when the number of Flounder backends is small and the backends
can be partially ordered with respect to their requirements and unordered pairs are
mutually exclusive on any single system. This is the case with the current range of
Flounder backends available.

As soon as the number of backends increases, this trial and error method may
not be feasible anymore, because each backend may need to allocate resources at
the beginning of the connection attempt and release them again after it has failed,
a process which takes time and creates unnecessary workload for the processes
guarding the resources.

Also, when connection types become more complex, such as routed connections
with multiple possible gateways, a more sophisticated way of choosing the Flounder
backend and its parameters is needed.

5.2 Implementation

My implementation of a protocol selection method introduces an additional step in
the connection creation process. Before a connection attempt is made, a process
sends a message to its monitor, asking for the type of connection that should be
used for communication between that core and the target core.

The monitor may be the bootstrap monitor, in which case the skb is running on
the same core. The monitor queries the skb for the preferred connection type and
sends it back to the process.

41

5 Protocol Selection

Backend Requirements for connections between cores A, B

LMP • A = B
UMP IPI • A, B have shared memory

• (A, B have cache coherence for shared memory)
• A can send an IPI to B
• B can send an IPI to A

UMP • A, B have shared memory
• A, B have cache coherence for shared memory

SIFMP • A 6= B
• A, C have shared memory (C 6= B)
• B, D have shared memory (D 6= C, D 6= A
• C, D are connected by sif
• there exists a backend for the connection (A, C)
• there exists a backend for the connection (B, D)

BMP • A, B cores on a Beehive processor

Table 5.1: Requirements table for Flounder backends

If the monitor is not the bootstrap monitor, it forwards the message to the monitor
that booted it through the inter-monitor connection. This way the message will
eventually reach the bootstrap monitor, which then sends back the reply along the
same path.

When the reply reaches the process, the process can decide which Flounder back-
end to use and will start a connection attempt with that backend. Should the
connection attempt fail, it does not try any other connection types, but returns an
error to the callback function.

If a request for a connection type can’t be forwarded to the skb, the process
receives an error indicating this. The process will then use a fallback function to
use the trial and error method. This will happen if the system was started without
an skb or when the skb has not been started yet.

The decision which Flounder backend should be used is made by a skb module
that takes available hardware information and compares them to requirements for
the backends (see table 5.1).

5.3 Evaluation

The backend selection implementation avoids the trial and error method that was
previously used in Barrelfish as much as possible without adding heuristics which
can be used without contacting the skb.

The implementation uses the connection to the monitor of a process to get the
information. This seems reasonable, since the monitor is already responsible for

42

5.4 Future Work

helping processes to create connections.
The implementation uses only the skb, the monitor and the inter-monitor con-

nections to query for the preferred Flounder backend. As the monitor and the inter-
monitor connections should be available before any other services, this method has
very low requirements to work.

5.4 Future Work

The implementation of the protocol selection is very rudimentary and does not yet
have the means to provide the connection initiating process with more information
about the preferred protocol, such as ringbuffer size or routing information. With
more complex architectures, which will probably be created in the future, this may
become a requirement.

43

6 Related Work

Heterogeneity

A lot of work has been done on how to make use of spare computing power on
devices in computer systems to move work off the host CPU. In this section I am
going to describe some of the work that has been done in this area.

Helios

In [NHM+09] Nightingale et al. present the Helios operating system, which is
designed to run on a heterogeneous platform. Helios is based on Singularity [HL04],
an operating written almost entirely in Sing#, which is an extension to the C#
programming language.

Helios extends the Singularity operating system with satellite kernels. Satellite
kernels are microkernels that don’t require a lot of hardware primitives to run.
The Helios satellite kernels require the device on which it runs to have a timer, an
interrupt controller and the ability to use traps. With this, Helios satellite kernels
are able to run on general purpose CPUs with or without NUMA domains, network
cards or future graphics cards such as the Intel Larrabee.

Because applications written for Helios and Singularity, for that matter, are com-
piled to byte-code of the .NET platform and compiled at runtime, no changes have
to be made for applications to run on any satellite kernel, on any architecture.

Helios extends the messaging system in Singularity by a remote message passing
mechanism, so that applications located on different satellite kernels can communi-
cate. This remote message passing mechanism is integrated transparently into the
existing messaging system, so that applications can use it without changes to the
code.

Hera-JVM

The Hera-JVM [MS09] is an implementation of a Java Virtual Machine based on
the JikesRVM that runs on the IBM Cell processor 1, a processor with two different
architecture types on a single die, i.e. a heterogeneous system.

The IBM Cell processor consists of 9 processors of two types: a single PowerPC
processor called Power Processing Element (PPE) and 8 Synergistic Processing El-
ements (SPE). The PPE is a general purpose processor, while the 8 SPEs are

1http://www.research.ibm.com/cell/

44

http://www.research.ibm.com/cell/

co-processors, designed to do most of the work, but which can not run on their own
and require the help of the PPE to do any useful work.

A Java thread can be run entirely on the PPE if that is the developer’s intent or it
can switch core type on any method invocation. Therefore, and because the Hera-
JVM uses a JIT-compiler only, Java applications are compiled on a per-method
basis. Since most methods only ever run on one processor type, most of the Java
byte-code has to be compiled only once, either for the PPE or SPEs. The compiler
inserts code to trap to migration support code automatically if a method should
be run on a particular processor. As soon as amethod that was to be executed on
another core type returns, the thread is migrated back to the originating processor
where it resumes execution.

To cope with the SPEs’ non memory-coherent local cache, the Hera-JVM uses
a software cache mechanism to cache entire Java-objects and methods. Before
accessing fields of an object or calling a method, the compiler adds inline code to
check whether the object or method in question is already in the cache and if not
traps to a handler that copies it from main memory to the software cache.

Harmony

In [DY08] Diamos et al. propose a system to effectively create applications for
heterogeneous systems in the HPC area called Harmony.

Harmony consists of a programming model and the Harmony runtime. Harmony
applications consist of a code segment invoking the execution of compute kernels
and control decisions. Compute kernels can be compared to functions in imperative
programming languages. They can be invoked, take input arguments and define a
set of output arguments. The order of execution of compute kernels can be restricted
by control decisions by specifying dependencies of kernels on other kernels. Compute
kernels can be shipped with multiple implementations for different architectures, but
all of them have to produce the same output for a set of input arguments, i.e. they
must conform to the same specification.

As a Harmony program executes, compute kernels are invoked and scheduled by
the runtime on any device for which an implementation of that compute kernel
exists, and if possible on the device that is best suited for the task at hand.

Since dependencies could slow down computation if they impose a sequential
execution of kernels, the Harmony runtime is able to speculatively execute kernels
akin to branch prediction in imperative programming languages and recover in the
case of a misspeculation.

Hydra

Weinsberg et al. present a system for offloading parts of applications to devices
better suited for the task in [WDA+08]. The proposed system is called Hydra and
consists of a programming model, host runtime support and runtime support for
target devices.

45

6 Related Work

In Hydra, applications are split into components that may either be implemented
as conventional parts of the application running on the host processor or as Offcodes.
Offcodes are specified by an Offcode Description File (ODF) and can implement
one or more interfaces. Offcodes can express multiple kinds of dependencies on
other Offcodes, such as the requirement to load an Offcode on the same device or
to load it on its preferred device. Also, preferred device-classes for the Offcode can
be specified, such as NICs or graphics cards.

When an offload-aware application (OA) is started, it may invoke the Hydra run-
time to create and deploy an Offcode. The runtime creates a mapping of Offcodes to
devices that satisfies any constraints given by the ODFs and invokes an appropriate
compiler or linker and does the actual offloading. Dynamic loading of Offcodes can
also be done on either the host CPU or on-demand by the target devices.

Once an Offcode is deployed on a target device, the OA has a default channel
to the Offcode and with it the possibility to create specialised channels for specific
purposes or to call functions of interfaces implemented by the Offcode.

SPINE

In [FMOB98] Fiuczynski et al. present SPINE, a system to offload parts of appli-
cations onto I/O devices.

The SPINE runtime consists of a host component called the SPINE kernel run-
time and a I/O device component called SPINE I/O runtime. SPINE extensions,
which are written in Modula-3, have access to the standard Modula-3 interfaces,
means of communication with other extensions and the host component as well as
access to hardware such as DMA and network send/receive engines.

The host application and SPINE extensions communicate by using a messaging
mechanism. The messages can either be small or bulk messages and messages are
routed to either the host or I/O devices by a dispatcher.

GPU offloading

GPU computing was made easier with the introduction of CUDA [NVI10] and more
recently with OpenCL [SGS10].

CUDA and OpenCL enable the use of a subset of C to write kernels for offloading
on GPUs and other heterogeneous platforms such as the IBM Cell processor.

Fast IPC

L3

Liedtke describes in [Lie93] a modification of the L3-kernel, a microkernel of the
second generation. Since it is widely believed that microkernels can not perform
well because IPC is too slow, and former attempts to reduce the time needed for an

46

IPC weren’t very successful, they tried to make IPC faster by completely redesigning
the kernel. They were able to drastically reduce the time needed to complete an
IPC-call by focusing the design of the whole kernel on fast IPC. The system avoids
superfluous copying on calls, tries to reduce cache misses and reduces TLB misses
by careful placement of important structures in memory. The resulting time taken
to execute an IPC call is only twice the minimum time imposed by the hardware.

Today, the L3 microkernel has mostly been replaced by its successor, the L4
microkernel [Lie95], and its different variations.

Batched Futures

Bogle and Liskov present a system called Batched Futures [BL94] that is capable of
substantially reducing the number of cross domain calls done when interacting with
a object oriented database. Often when accessing objects in an object-oriented
database, the calls don’t do much work on the server side, but take a long time
to complete nevertheless, because the cross domain calls are so expensive. With
Batched Futures, calls to the database which only return handles to objects are not
executed when the call is made by the application, but only when the handle is
actually used to retrieve or store a value or otherwise access a feature of the object.
The system then sends all buffered calls to the database in a single call and return
the value requested by the application.

MPICH(-G)

In [GLDS96], a message passing library called MPICH, which implements the MPI
standard, is presented. MPICH aims to provide a high degree of portability and
high performance. The system is heavily layered and allows for architecture- specific
optimizations at different layers of the library. In [FK98] the library is extended
to run on heterogeneous grid environments. Although the libraries run on top
of existing systems and are not part of the operating system itself, the aim for
portability and high performance are the same as in the message-passing system in
Barrelfish, which also uses multiple layers to ease the use of the message-passing
infrastructure.

SCC

SCC programmer’s manual

The Intel Single-Chip Cloud Computer (SCC) platform [Int10] is a research pro-
cessor developed by Intel. It features a tile-oriented architecture wich 24 tiles on a
chip with 2 cores on each tile with a total of 48 cores on a single chip. The tiles
are connected by routers in a grid-like network. The SCC features 4 memory con-
trollers, each capable of managing up to 16GB of DDR3 memory, making a total

47

6 Related Work

of 64GB of memory accessible from the SCC cores. The memory in the SCC is
divided into different types, namely Message Passing Buffer memory, core-specific
memory and shared memory. The Message Passing Buffer memory is located on
the tiles and has special semantics that allow them to be used for message-passing
between the cores, while the core-specific memory and shared memory is located in
the main memory managed by the memory controllers. Memory access on the SCC
is not covered by cache-coherence, which makes it a great platform for systems like
Barrelfish.

48

7 Conclusion

As a conclusion I can say that I was able to produce two extensions for Barrelfish,
which both enable it to span a heterogeneous set of processors. With that I have
achieved my goal to create a version of Barrelfish with support for heterogeneous
cores.

Both extensions work reliably and integrate well into the existing communication
infrastructure in Barrelfish.

The extension that allows Barrelfish to have connections from x86 64 cores to
x86 32 cores is fast and has the potential to be extended to include more architec-
tures as it uses architecture-independent messages that could be written or read on
any architecture that also supports these types of messages.

SIFMP is a first attempt to create connections between a host and an attached
PCIe device in a way that applications are not concerned with the difficulties in
creating such connections. SIFMP works reliable, but is still slower than it could
be. SIFMP may also be too focused on connections between a host and a SCC and
does not support connections to other devices.

I think Barrelfish is very well suited as a basis for a OS that spans cores, CPUs and
devices of different architecture, as the aspect of separated but connected computing
units is part of the multicore architecture of Barrelfish. However, much work like
routing and capability transfer remains to be done.

49

A SCC

Default memory mapping

LUT # Physical Address
255 FFFFFFFF - FF000000 Private (Boot Page)
254 FEFFFFFF - FE000000
253 FDFFFFFF - FD000000
252 FCFFFFFF - FC000000
251 FBFFFFFF - FB000000 VRC
250 FAFFFFFF - FA000000 Management Console TCP/IP Interface
249 F9FFFFFF - F9000000 Route to Host for eMAC access
248 F8FFFFFF - F8000000 Core’s own System Configuration Register
247 F7FFFFFF - F7000000 System Configuration Register – Tile 23
246 F6FFFFFF - F6000000 System Configuration Register – Tile 22
245 F5FFFFFF - F5000000 System Configuration Register – Tile 21
244 F4FFFFFF - F4000000 System Configuration Register – Tile 20
243 F3FFFFFF - F3000000 System Configuration Register – Tile 19
242 F2FFFFFF - F2000000 System Configuration Register – Tile 18
241 F1FFFFFF - F1000000 System Configuration Register – Tile 17
240 F0FFFFFF - F0000000 System Configuration Register – Tile 16
239 EFFFFFFF - EF000000 System Configuration Register – Tile 15
238 EEFFFFFF - EE000000 System Configuration Register – Tile 14
237 EDFFFFFF - ED000000 System Configuration Register – Tile 13
236 ECFFFFFF - EC000000 System Configuration Register – Tile 12
235 EBFFFFFF - EB000000 System Configuration Register – Tile 11
234 EAFFFFFF - EA000000 System Configuration Register – Tile 10
233 E9FFFFFF - E9000000 System Configuration Register – Tile 09
232 E8FFFFFF - E8000000 System Configuration Register – Tile 08
231 E7FFFFFF - E7000000 System Configuration Register – Tile 07
230 E6FFFFFF - E6000000 System Configuration Register – Tile 06
229 E5FFFFFF - E5000000 System Configuration Register – Tile 05
228 E4FFFFFF - E4000000 System Configuration Register – Tile 04
227 E3FFFFFF - E3000000 System Configuration Register – Tile 03
226 E2FFFFFF - E2000000 System Configuration Register – Tile 02
225 E1FFFFFF - E1000000 System Configuration Register – Tile 01

Table A.1: Default memory mapping for 16 GB of main memory

50

LUT # Physical Address
224 E0FFFFFF - E0000000 System Configuration Register – Tile 00
223 DFFFFFFF - DF000000

: : :
217 D9FFFFFF - D9000000
216 D8FFFFFF - D8000000 Core’s own MPB
215 D7FFFFFF - D7000000 MPB in Tile (x=5,y=3)
214 D6FFFFFF - D6000000 MPB in Tile (x=4,y=3)
213 D5FFFFFF - D5000000 MPB in Tile (x=3,y=3)
212 D4FFFFFF - D4000000 MPB in Tile (x=2,y=3)
211 D3FFFFFF - D3000000 MPB in Tile (x=1,y=3)
210 D2FFFFFF - D2000000 MPB in Tile (x=0,y=2)
209 D1FFFFFF - D1000000 MPB in Tile (x=5,y=2)
208 D0FFFFFF - D0000000 MPB in Tile (x=4,y=2)
207 CFFFFFFF - CF000000 MPB in Tile (x=3,y=2)
206 CEFFFFFF - CE000000 MPB in Tile (x=2,y=2)
205 CDFFFFFF - CD000000 MPB in Tile (x=1,y=2)
204 CCFFFFFF - CC000000 MPB in Tile (x=0,y=2)
203 CBFFFFFF - CB000000 MPB in Tile (x=5,y=1)
202 CAFFFFFF - CA000000 MPB in Tile (x=4,y=1)
201 C9FFFFFF - C9000000 MPB in Tile (x=3,y=1)
200 C8FFFFFF - C8000000 MPB in Tile (x=2,y=1)
199 C7FFFFFF - C7000000 MPB in Tile (x=1,y=1)
198 C6FFFFFF - C6000000 MPB in Tile (x=0,y=1)
197 C5FFFFFF - C5000000 MPB in Tile (x=5,y=0)
196 C4FFFFFF - C4000000 MPB in Tile (x=4,y=0)
195 C3FFFFFF - C3000000 MPB in Tile (x=3,y=0)
194 C2FFFFFF - C2000000 MPB in Tile (x=2,y=0)
193 C1FFFFFF - C1000000 MPB in Tile (x=1,y=0)
192 C0FFFFFF - C0000000 MPB in Tile (x=0,y=0)
191 BFFFFFFF - BF000000

: : :
132 84FFFFFF - 84000000
131 83FFFFFF - 83000000 Shared MCH3 - 4MB
130 82FFFFFF - 82000000 Shared MCH2 - 4MB
129 81FFFFFF - 81000000 Shared MCH1 - 4MB
128 80FFFFFF - 80000000 Shared MCH0 - 4MB
127 7FFFFFFF - 7F000000

: : :
21 15FFFFFF - 15000000
20 14FFFFFF - 14000000

Table A.1: Default memory mapping for 16 GB of main memory

51

A SCC

LUT # Physical Address
19 13FFFFFF - 13000000 Private
18 12FFFFFF - 12000000 Private
: : :
1 01FFFFFF - 01000000 Private
0 00FFFFFF - 00000000 Private

Table A.1: Default memory mapping for 16 GB of main memory

Memory controller memory layout

Physical Address
FFFFFFFF - FF000000 Boot Page core 17

Boot pages of cores 0-5 and
12-17. These are placed at
the end of the core’s
physical memory

FEFFFFFF - FE000000 Boot Page core 16
: :

FAFFFFFF - FA000000 Boot Page core 12
F9FFFFFF - F9000000 Boot Page core 5

: :
F5FFFFFF - F5000000 Boot Page core 1
F4FFFFFF - F4000000 Boot Page core 0
F3FFFFFF - F3000000 This memory region is

unusedF2FFFFFF - F2000000
F1FFFFFF - F1000000 Default Memory This memory region is

mapped as default if no
other memory region should
be mapped in a LUT entry

F0FFFFFF - F0000000 Shared Memory
EFFFFFFF - EF000000 Private Memory of core 17

Private pages of cores 0-5
and 12-17 without their
last pages (boot pages)

EEFFFFFF - EE000000 Private Memory of core 17
: :

DCFFFFFF - DC000000 Private Memory of core 17
DBFFFFFF - DB000000 Private Memory of core 16

: :
79FFFFFF - 79000000 Private Memory of core 12
78FFFFFF - 78000000 Private Memory of core 12
77FFFFFF - 77000000 Private Memory of core 5
76FFFFFF - 76000000 Private Memory of core 5

: :
64FFFFFF - 64000000 Private Memory of core 5
63FFFFFF - 63000000 Private Memory of core 4

: :
01FFFFFF - 01000000 Private Memory of core 0

Table A.2: Memory layout for memory controller at (0,0)

52

Physical Address
00FFFFFF - 00000000 Private Memory of core 0

Table A.2: Memory layout for memory controller at (0,0)

53

A
S
C
C

SCC FPGA message format

byte # 31 - 0
structure

Payload

byte # 35 34 33 32
structure ·

< Dest ID >< Source ID >< tx ID >< byte enable >

byte # 39 38 37 36
structure ·

Address >

byte # 43 42 41 40
structure ·

><RCK Sub-ID>< RCK ID >< Command ><

byte # 47 46 45 44
structure ·

< Reserved

Table A.3: Message format for the SCC FPGA

54

B Benchmarks

For each benchmark, there are two graphs in this document, one depicting the mean
execution times and one for the median execution times. In the graphs for the mean
times, the ranges around the data points show the standard deviation of the test
results. In the graphs for the median times, the ranges below the data points show
the smallest measured value and the ranges above the data points show the greatest
measured value for that experiment.

All the benchmarks were completed with a 99.9% confidence interval for the mean
of at most ±2%.

For all the benchmarks a minimal set of Barrelfish services was loaded, consisting
of the following processes:

• cpu

• init

• mem serv

• monitor

• chips

• ramfsd

• skb

• pci

• spawnd

• sif (only for benchmarks involving SIFMP)

• flounder stubs *** bench (only for message protocol benchmarks)

• sif bench (only for SCC hardware benchmarks)

All benchmarks involving the SCC were done on the machine tomme1 or the
identical tomme2.

All benchmarks for the heterogeneous communication between x86 64 and x86 32
were done on the machine nos5.

tomme1/2

CPU: Intel Gainestown (Nehalem-EP) (Intel Xeon L5520)
/proc/cpuinfo under Linux says:

55

B Benchmarks

family 6
model 26
stepping 5
clock speed 2266.755MHz
cache size 8192kB
clflush size 64
cache alignment 64

Motherboard: SUN FIRE X2270

nos5

CPU: AMD Santa Rosa (Opteron 2200)
/proc/cpuinfo under Linux says:

family 15
model 65
stepping 3
clock speed 2800MHz
cache 1024kB
TLB size 1024 4K pages
clflush size 64
cache alignment 64

Motherboard: Tyan Thunder n6650W (S2915)

56

Bibliography

[BBD+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. The multikernel: a new os architecture for scalable
multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP ’09, pages 29–44, New York, NY,
USA, 2009. ACM.

[BL94] Phillip Bogle and Barbara Liskov. Reducing cross domain call overhead
using batched futures. In Proceedings of the ninth annual conference
on Object-oriented programming systems, language, and applications,
OOPSLA ’94, pages 341–354, New York, NY, USA, 1994. ACM.

[DY08] Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: an exe-
cution model and runtime for heterogeneous many core systems. In
Proceedings of the 17th international symposium on High performance
distributed computing, HPDC ’08, pages 197–200, New York, NY, USA,
2008. ACM.

[FK98] Ian Foster and Nicholas T. Karonis. A grid-enabled mpi: message pass-
ing in heterogeneous distributed computing systems. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing (CDROM), Super-
computing ’98, pages 1–11, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[FMOB98] Marc E. Fiuczynski, Richard P. Martin, Tsutomu Owa, and Brian N.
Bershad. Spine: a safe programmable and integrated network environ-
ment. In Proceedings of the 8th ACM SIGOPS European workshop on
Support for composing distributed applications, EW 8, pages 7–12, New
York, NY, USA, 1998. ACM.

[GLDS96] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A
high-performance, portable implementation of the mpi message passing
interface standard. Parallel Computing, 22(6):789 – 828, 1996.

[HL04] Galen C. Hunt and James R. Larus. Singularity tech report 1: Singu-
larity design motivation. Technical report, Microsoft Research, 2004.

[Int10] Intel Labs. Single Chip Cloud Computing (SCC) Platform Overview,
rev. 0.7 edition, May 2010. http://techresearch.intel.com/spaw2/
uploads/files/SCC_Platform_Overview.pdf.

57

http://techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf
http://techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf

Bibliography

[Lie93] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of the
fourteenth ACM symposium on Operating systems principles, SOSP ’93,
pages 175–188, New York, NY, USA, 1993. ACM.

[Lie95] J. Liedtke. On micro-kernel construction. In Proceedings of the fifteenth
ACM symposium on Operating systems principles, SOSP ’95, pages 237–
250, New York, NY, USA, 1995. ACM.

[MS09] Ross McIlroy and Joe Sventek. Hera-jvm: abstracting processor hetero-
geneity behind a virtual machine. In Proceedings of the 12th conference
on Hot topics in operating systems, HotOS’09, pages 15–15, Berkeley,
CA, USA, 2009. USENIX Association.

[NHM+09] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel,
and Galen Hunt. Helios: heterogeneous multiprocessing with satellite
kernels. In Proceedings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles, SOSP ’09, pages 221–234, New York, NY,
USA, 2009. ACM.

[NVI10] NVIDIA. NVIDIA CUDA C Programming Guide, 9
2010. http://developer.download.nvidia.com/compute/cuda/
3 2 prod/toolkit/docs/CUDA C Programming Guide.pdf.

[SGS10] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel
programming standard for heterogeneous computing systems. IEEE
Des. Test, 12:66–73, May 2010.

[SSBR08] A. Schupbach, Peter Simon, Andrew Baumann, and Timothy Roscoe.
Embracing diversity in the Barrelfish manycore operating system. 2008.

[WDA+08] Yaron Weinsberg, Danny Dolev, Tal Anker, Muli Ben-Yehuda, and Pete
Wyckoff. Tapping into the fountain of cpus: on operating system sup-
port for programmable devices. In Proceedings of the 13th international
conference on Architectural support for programming languages and op-
erating systems, ASPLOS XIII, pages 179–188, New York, NY, USA,
2008. ACM.

58

	Introduction
	Motivation

	Background
	Barrelfish
	IDC / Flounder

	SCC
	Overview
	Memory controller memory layout
	Write-combine buffer
	FPGA / System Interface
	Host-SCC messaging
	Benchmarks

	Heterogeneous Support
	Overview
	Boot Process
	Communication
	Application Start

	Implementation
	Cross-Architecture Boot
	Cross-Architecture Communication Protocol
	Cross-Architecture Application Start

	Evaluation
	Future Work
	Endianness
	Capabilities

	SIFMP - SIF message passing
	Overview
	Implementation
	Possible Communication Schemes
	Double Proxy
	Double Proxy, Notificationless
	Double Proxy, IPI Notifications
	Single Proxy
	Encapsulation

	SIFMP Communication
	SIF
	Host Part
	SCC Part

	Bootstrapping
	SIF
	Monitor
	Inter-SIF

	RPC Clients

	Evaluation
	Benchmarks

	Future Work
	Multicore SCC
	Data Prefetch
	SCC-Host messaging
	IPI
	Routing

	Protocol Selection
	Overview
	Implementation
	Evaluation
	Future Work

	Related Work
	Conclusion
	SCC
	Benchmarks

