
Early experience with the Barrelfish OS
and the Single-Chip Cloud Computer

Simon Peter, Adrian Schüpbach, Dominik Menzi and Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract—Traditional OS architectures based on a single,
shared-memory kernel face significant challenges from hardware
trends, in particular the increasing cost of system-wide cache-
coherence as core counts increase, and the emergence of hetero-
geneous architectures – both on a single die, and also between
CPUs, co-processors like GPUs, and programmable peripherals
within a platform.

The multikernel is an alternative OS model that employs
message passing instead of data sharing and enables architecture-
agnostic inter-core communication, including across non-coherent
shared memory and PCIe peripheral buses. This allows a single
OS instance to manage the complete collection of heterogeneous,
non-cache-coherent processors as a single, unified platform.

We report on our experience running the Barrelfish research
multikernel OS on the Intel Single-Chip Cloud Computer (SCC).
We describe the minimal changes required to bring the OS up
on the SCC, and present early performance results from an SCC
system running standalone, and also a single Barrelfish instance
running across a heterogeneous machine consisting of an SCC
and its host PC.

I. INTRODUCTION

The architecture of computer systems is radically chang-
ing: core counts are increasing, systems are becoming more
heterogeneous, and the memory system is becoming less
uniform. As part of this change, it is likely that system-wide
cache-coherent shared memory will no longer exist. This is
happening not only as specialized co-processors, like GPUs,
are more closely integrated with the rest of the system, but
also as core counts increase we expect to see cache coherence
no longer maintained between general purpose cores.

Shared-memory operating systems do not deal with this
complexity and among the several alternative OS models,
one interesting design is to eschew data sharing between
cores and to rely on message passing instead. This enforces
disciplined sharing and enables architecture-agnostic commu-
nication across a number of very different interconnects. In
fact, experimental non-cache-coherent architectures, such as
the Intel Single-Chip Cloud Computer (SCC) [1], already
facilitate message passing with special hardware support.

In this paper, we report on our efforts to port Barrelfish to
the SCC. Barrelfish is an open-source research OS developed
by ETH Zurich and Microsoft Research and is structured
as a multikernel [2]: a distributed system of cores which
communicate exclusively via messages.

The multikernel is a natural fit for the SCC that can fully
leverage the hardware message passing facilities, while requir-
ing only minimal changes to the Barrelfish implementation for
a port from x86 multiprocessors to the SCC. Furthermore, the

Core BCore A

App 2App 1

Shared
Memory

Message
Queue

kernelMPB

1. Write

 2. System
Call

 3. Write

6. Notify

5.

 Read

7. Read

kernel

4. IPI

Fig. 1. Sending of a message between SCC cores

SCC is a good example of the anticipated future system types,
as it is both a non-cache coherent multicore chip, as well as
a host system peripheral.

We describe the modifications to Barrelfish’s message-
passing implementation, the single most important subsystem
needing adaptation. We give initial performance results on the
SCC and across a heterogeneous machine consisting of an
SCC peripheral and its host PC.

II. MESSAGE PASSING DESIGN

Message passing in Barrelfish is implemented by a mes-
sage passing stub and lower-level interconnect and notifi-
cation drivers. The message passing stub is responsible for
(un-)marshaling message arguments into a message queue and
provides the API to applications. Messages are subsequently
sent (received) by the interconnect driver, using the notification
driver to inform the receiver of pending messages. Messages
can be batched to reduce the number of notifications required.

Message passing is performance-critical in Barrelfish and
thus heavily tied to the hardware architecture. In this section,
we describe the interconnect and notification driver design
between cores on the SCC, as well as between host PC and
the SCC. We mention changes to the message passing stub
where appropriate.

A. SCC Inter-core Message Passing

The SCC interconnect driver reliably transports cache-line-
sized messages (32 bytes) through a message queue in non-
coherent shared memory. Shared memory is accessed entirely
from user-space, shown by steps 1 and 7 in Figure 1, using
the SCC write-combine buffer for performance. The polling
approach to detect incoming messages, used by light-weight

SCCHost

App 1 App 2sifsif
PCIe

Frame

Frame

Frame

kernel

Frame 1. Write

2. Notify

3. Copy

 4. Write

5. Copy

 6. IPI
 7. Notify

8.
Read

9. Notify

10. Read

Fig. 2. Sending of a message from host to SCC

message passing runtimes, such as RCCE [3], is inappropriate
when using shared memory to deliver message payloads, since
each poll of a message-passing channel requires a cache
invalidate followed by a load from DDR3 memory.

Consequently, the notification driver uses inter-core notifica-
tions, implemented within per-core kernels, to signal message
arrival. Notifications are sent by a system call (2) via a ring-
buffer on the receiver’s on-tile message passing buffer (MPB)
and reference shared-memory channels with pending messages
(3). An inter-core interrupt (IPI) is used to inform the peer
kernel of the notification (4), which it forwards to the target
application (6).

At first sight, it may seem odd to use main memory (rather
than the on-tile MPB) for passing message payloads, and to
require a trap to the kernel to send a message notification.
This design is motivated by the need to support many message
channels in Barrelfish and more than one application running
on a core. The SCC’s message-passing functionality does not
appear to have been designed with this use-case in mind. We
discuss this issue further in Section IV.

B. Host-SCC Message Passing

The SCC is connected to a host PC as a PCI express (PCIe)
device and provides access to memory and internal registers
via a system interface (SIF). The host PC can write via the
SIF directly to SCC memory using programmed I/O or the
built-in direct memory access (DMA) engine.

The interconnect-notification driver combination used be-
tween host PC and SCC, called SIFMP, employs two proxy
drivers. One on the host, and one on the SCC. New SIFMP
connections are registered with the local proxy driver. When
the interconnect driver is sending a message by writing to
the local queue (1), the notification driver notifies the proxy
driver (2), which copies the payload to an identical queue
on the other side of the PCIe bus (3). The proxy driver then
forwards the notification to the receiver of the message via
a private message queue (4, 5), sending an IPI to inform the
receiving driver of the notification via its local kernel on the
SCC (6, 7). The peer proxy reads the notification from its
private queue (8) and forwards it to the target application
(9), which receives the message by reading the local copy
via its interconnect driver (10). This implementation, shown
in Figure 2, uses two message queues (one on each side) and

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 [

c
y
c
le

s
]

Message to core

Overall
Send

Receive

Fig. 3. Average notification latency from core 0 (Overall). Send and Receive
show time spent in sending and receiving, respectively.

two proxy driver connections (one for each driver) for each
SIFMP connection.

III. EVALUATION

We evaluate message passing efficiency by running a series
of messaging benchmarks. All benchmarks execute on a Rocky
Lake board, configured to 533MHz core clock speed, 800MHz
memory mesh speed and 266MHz SIF clock speed. The host
PC is a Sun XFire X2270, clocked to 2.3GHz.

A. Notification via MPB

We use a ping-pong notification experiment to evaluate the
cost of OS-level notification delivery between two peer cores.
Notifications are performance critical to notify a user-space
program on another core of message payload arrival. The
experiment covers the overheads of the system call required to
send the notification from user-space, the actual send via the
MPB and corresponding IPI, and forwarding the notification
to user-space on the receiver.

Figure 3 shows the average latency over 100,000 iterations
of this benchmark between core 0 and each other core, as
well as a break-down into send and receive cost. As expected,
differences in messaging cost due to topology are only notice-
able on the sender, where the cost to write to remote memory
occurs. The relatively large cost of receiving the message is
due to the direct cost of the trap incurred by the IPI, which
we approximated to be 600 cycles, and additional much larger
indirect cost of cache misses associated with the trap.

B. Host-SCC Messaging

We determined the one-way latency of SIFMP for a cache-
line size message from host to SCC to be on the order of
5 million host cycles. As expected from a communication
channel that crosses the PCIe bus, SIFMP is several orders of
magnitude slower than messaging on the host (approximately
1000 cycles). To gain more insight into the latency difference,
we assess the performance of the PCIe proxy driver imple-
mentation, by evaluating read access latency of varying size
from SCC memory to the host PC, using DMA.

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

Cores

RCCE
Barrelfish

Fig. 4. RCCE LU benchmark speedup comparison

The results show a baseline read overhead of about 500,000
host clock cycles, which is 10% of the messaging overhead.
Thus, PCIe bus latency explains only a fraction of the mea-
sured messaging overhead and we have yet to determine the
cause of these overheads.

C. Application-level benchmarks

The standard software environment available on the SCC
uses RCCE [3], a library for light-weight communication,
highly optimized for this platform, requiring exclusive access
to the MPB. We implemented a substrate supporting the
RCCE message-passing interface using Barrelfish stubs and
interconnect drivers for messaging, which multiplexes MPB
access to applications. We evaluate the LU benchmark shipped
with RCCE to compare the performance achieved on Barrelfish
to that of RCCE.

From the result, shown in Figure 4, we can see that, at
the application level, Barrelfish shows only slightly lower
performance and scalability than direct MPB access via RCCE.
This overhead is due to multiplexing and the early version of
our port, which we seek to improve.

IV. DISCUSSION

The port of the IA-32 version of Barrelfish to the SCC
required 2235 lines of SCC-specific C code and 130 lines of
assembly, only 17% of which execute in privileged mode. By
and large, the bring-up for SCC was straightforward and took
about 2 person-months. The prototype is fully functional and
shows adequate initial application performance.

We experienced no significant problems with Barrelfish due
to the lack of coherent caches on the SCC. This was not a big
surprise to us, but it was a confirmation of our expectations,
and a validation of the OS design. We regard the lack of
coherent caches as a useful feature from a research perspective.

In this section, we cover the most influential architectural
issues to our design and discuss possible improvements in
either software or hardware.

A. Cache issues

The caches do not allocate a cache line on a write miss,
treating it as an uncached write to memory. Furthermore, a

core is allowed only one outstanding write transaction; when
such a write miss occurs, any subsequent memory or L2 cache
access causes the core to stall until the write to memory
completes (typically around 100 cycles). Combined with the
lack of a store buffer, this policy causes severe performance
degradation for word-sized writes to data not already present
in the cache. When storing to a fresh stack frame, or saving
registers in a context switch path, each individual memory
write instruction will stall the processor.

For example, in Barrelfish kernel code, we observed that
simple function calls in hot paths of the system regularly
have an order of magnitude greater overhead (in cycles) on
SCC compared to newer x86 processors. Our code is not
optimized for this behavior and shows major inefficiencies,
in particular on function call boundaries immediately after
kernel crossings. Our tentative explanation is that caller-saved
registers will be pushed onto the stack upon a function call and
then restored upon return from the function. Both cases miss
in the cache, but the call incurs particularly high overhead,
as each individual write goes to memory, and the cache lines
are only allocated when reading them on return. We have also
observed substantially increased costs for exception and trap
handling, which save register state to memory not commonly
present in the cache.

It is possible that an OS workload is a particularly bad case
for this cache design. More work is required to both confirm
this as the cause, and explore possible solutions. Ideally this
could be fixed in hardware, through changes to the cache
architecture, the addition of a store buffer, or simply allowing
the write-combining buffer to be used for non-message-buffer
memory, which would mitigate the problem by allowing full
cache-line writes to memory. A possible software fix would
involve reading from each cache line before it was written, to
ensure its presence in the cache; in the case of context save
code this could be done explicitly, but for stack access would
probably require compiler modifications.

B. Message-passing memory

The ability to bypass the L2 cache for areas of address
space designated as messaging buffers (MB), combined with
an efficient L1 invalidation of all such lines, is one of the most
interesting features of the SCC.

As with other message-passing features of the SCC, this
functionality may have been designed with a single-application
system in mind. When using MB memory for the operating
system, as in Barrelfish, we typically have a number of com-
munication channels in use at any one time. For this reason,
although the CL1INVMB instruction is extremely cheap to
execute, its effects may be somewhat heavyweight, since it
invalidates all messaging data, some of which we may wish
to have remain in the L1 cache.

In our message-passing implementations, we generally
know precisely which addresses we wish to invalidate. Conse-
quently, we would find more fine-grained cache control very
useful. An instruction which would invalidate a region around
a given address would be ideal for us.

Better still would be to extend such functionality to the
L2. Receiving data in an MPB generally involves an L1
miss (ideally to the on-tile MPB, but see below why this
is problematic), followed by a miss to main memory caused
by copying the data somewhere where it can be cached in
L2, followed by a second L2 miss when the data needs to
be subsequently read, due to the non-allocation policy of the
cache on a write miss. The final penalty can be mitigated
somewhat by performing a read of the destination location
(and so populating the L2) before writing the received data.

This coarse-grain cache access can have far-reaching impli-
cations for applications. For example, in its current form the
cache architecture seems to prohibit any efficient zero-copy
I/O implementation, since if the message passing buffers are
used, any cached data will be invalidated any time further I/O
occurs. Our position overall is that explicit cache management
is good, and Barrelfish (and, we believe, other OS code)
would benefit from future SCC implementations providing
much more fine-grained control over it.

C. The on-tile message passing buffer

We experienced two significant challenges when using the
on-tile message passing buffers on SCC. These challenges are
related, but different.

1) Size: The small size of 8192 bytes constrains the size of
message queues. If messages cannot be lost (a typical design
assumption for message-passing applications, including Bar-
relfish), this results in blocking and tighter coupling between
communicating processes.

Barrelfish uses message-passing throughout for communica-
tion, and consequently requires a large number of independent
message channels to share the MPB. This leads to the question
of how to allocate space in the MPB to message channels.
Obviously, the space is too small to reserve parts for message
payload. For example, reserving 8 cache lines for each mes-
sage queue would allow only 32 message channels per core,
which is impractical.

It is conceivable to multiplex all Barrelfish channels onto a
single channel per pair of cores, requiring only 47 channels
in the MPB and privileged code to demultiplex incoming
messages. This allows 170 bytes of buffer per core pair, still
small, but possibly useful for small messages. The downside
to this approach is a kernel crossing and increased contention.

Finally, message payload could be written to the MPB per
application, but this increases contention even further. In both
cases, direct payload access by applications is prohibited, as
the MPB has to be freed up as quickly as possible to reduce
contention. This requires copying the message in and out of
the MPB, which is a costly operation.

2) Multiplexing: An operating system must mediate access
to the MPBs to ensure safe sharing of the buffers between
applications. Unfortunately, the very high MPB access perfor-
mance is completely dominated by the cost of kernel crossing
to validate the access. As an additional cost, since multiple
cores can be expected to be accessing each tile’s MPB, write
access to each core’s memory must be done under a lock.

Like most resources, the MPBs can be multiplexed in both
in space and time.

Space-multiplexing the MPBs requires a high-performance
protection mechanism to divide the buffer between applica-
tions or other resource principals. For main memory, this is
performed by each core’s MMU. The P54C chip used in
the SCC provides hardware protection of memory segments
of sizes smaller than a page and thus could be used to
space-multiplex the MPB when small messages are sufficient.
However, the size of the MPB prohibits space multiplexing of
larger message queues.

Time-multiplexing the MPBs requires copying each appli-
cation’s state into or out of the MPBs on a context switch,
or performing this lazily. This is potentially 8KB of message
data, a substantial context-switch overhead when caches do
not allocate on a write miss.

Unlike memory which is under the exclusive use of an appli-
cation, memory used for communication between applications
on different cores is shared between a pair of principals. Time-
multiplexing on-tile MPB memory in software is possible via
co-scheduling [4] of communicating principals on different
cores. However, this constrains the system-wide schedule and
requires considerable communication overhead in itself [5].

In addition, our experience with Barrelfish so far suggests
that some kind of inter-core notification mechanism is an
important complement to polled message-passing support. The
fact that we can access interrupt pins on cores remotely on
the SCC is very nice in this regard, but even better would be
some kind of fast user-space control transfer. One option is to
introduce address space identifiers (these should be orthogonal
to virtualization in any case), and cause a lightweight same-
address-space jump if and only if that address space is running.

D. System Interface

A number of different approaches are possible for com-
munication across a PCIe bus, such as using only a single
driver in the host PC which controls all memory operations
on the SCC. While this approach is both simpler and more
resource efficient than our current implementation, the lack of
notification mechanism from the SCC to the host PC makes
it untractable. The host PC has to poll every possible mes-
sage channel in SCC memory, incurring a huge performance
overhead. The double proxy approach reduces this cost by
requiring only one channel to be polled.

To be able to better leverage a single image OS across both
host and peripheral and facilitate message passing across the
PCIe bus, we are missing an efficient notification mechansim
from SCC to host. Given PCIe bus latencies, a simple PCI
device interrupt would be sufficient.

V. RELATED WORK

Helios [6] introduces the concept of satellite and coordinator
kernels to enable heterogeneous computing. Satellite kernels
are light-weight run-times that execute on the peripheral and
provide a limited set of services. System calls pertaining
to functionality implemented in the coordinator kernel are

relayed to the host PC. This enables applications and operating
system components to run unmodified on the peripheral.
Barrelfish has no concept of satellite kernels and follows a
fully distributed model.

The standard operating system model for the SCC treats the
chip as a cluster of independent machines and runs a complete
Linux operating system on each core that communicate via the
TCP/IP network protocol [3]. Using TCP/IP to communicate
incurs high overheads for unnecessary functionality, such as
message fragmentation, replay and sequencing. Furthermore,
executing a complete OS on each core has high memory
overhead, while complicating global resource management,
which has to be carried out by coarse-grained user-level cluster
resource management software.

VI. CONCLUSION

We have demonstrated that it is possible to run a single
image OS across a heterogeneous, non-cache-coherent ma-
chine consisting of an SCC and its host PC with reasonable
performance (the remaining issues with our PCIe interconnect
driver notwithstanding).

Our experience so far has provided insight into messaging
performance on the SCC when the on-tile message buffers
have to be multiplexed by an operating system. Barrelfish is
a work in progress, and we believe that we can improve on
the performance numbers presented here. Nevertheless, we feel
our SCC experience provides useful insights for future designs
of more OS-friendly message-passing hardware.

In addition to performance, asymmetry and latency will
continue to be issues for future multicore architectures. We
are looking at using improved scheduling to address this
challenge, using the SCC port of Barrelfish as a research
vehicle. For example, threads that communicate or synchronize
frequently should not be placed on cores separated by a
high latency link, and the cost of transferring a program and
its working set to a different core should not outweigh the
expected speed-up.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A
48-core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in International Solid-State Circuits Conference, Feb. 2010, pp. 108–109.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new OS
architecture for scalable multicore systems,” in Proceedings of the 22nd
ACM Symposium on Operating System Principles, Oct. 2009.

[3] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight com-
munications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[4] D. G. Feitelson and L. Rudolph, “Gang scheduling performance bene-
fits for fine-grain synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, pp. 306–318, 1992.

[5] J. Ousterhout, “Scheduling techniques for concurrent systems,” in IEEE
Distributed Computer Systems, 1982.

[6] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: heterogeneous multiprocessing with satellite kernels,” in Pro-
ceedings of the 22nd ACM Symposium on Operating System Principles,
2009, pp. 221–234.

