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ABSTRACT
Distributed machine learning training is one of the most common and important workloads running on data centers
today, but it is rarely executed alone. Instead, to reduce costs, computing resources are consolidated and shared
by different applications. In this scenario, elasticity and proper load balancing are vital to maximize efficiency,
fairness, and utilization. Currently, most distributed training frameworks do not support the aforementioned
properties. A few exceptions that do support elasticity, imitate generic distributed frameworks and use micro-tasks.

In this paper we illustrate that micro-tasks are problematic for machine learning applications, because they require
a high degree of parallelism which hinders the convergence of distributed training at a pure algorithmic level
(i.e., ignoring overheads and scalability limitations). To address this, we propose Chicle, a new elastic distributed
training framework which exploits the nature of machine learning algorithms to implement elasticity and load
balancing without micro-tasks. We use Chicle to train deep neural network as well as generalized linear models,
and show that Chicle achieves performance competitive with state of the art rigid frameworks, while efficiently
enabling elastic execution and dynamic load balancing.

1 INTRODUCTION

The ever-growing amounts of data are fueling impressive ad-
vances in machine learning (ML), but depend on substantial
computational power to train the corresponding models. As
a result, many research works focus on addressing scalabil-
ity of distributed training across multiple machines. State of
the art algorithms include Mini-batch SGD (mSGD) (Rob-
bins & Monro, 1951; Kiefer et al., 1952; Rumelhart et al.,
1988) and Local SGD (lSGD) (Lin et al., 2018) for deep neu-
ral networks (DNNs) as well as Communication-efficient
distributed dual Coordinate Ascent (CoCoA) (Jaggi et al.,
2014; Smith et al., 2018) for generalized linear models
(GLMs).

Less work, however, has focused on efficiency, which is
equally (if not more) important because it effectively pro-
vides more computational power at the same cost. Indeed,
most works on distributed ML assume that they can operate
on dedicated clusters, which is rarely the case in practice
where ML applications co-inhabit common infrastructure
with other applications. In these shared environments, effi-
ciency depends on two properties: elastic execution: dynam-
ically adjusting resource (e.g., CPUs, GPUs, nodes) usage as
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their availability changes, and load balancing: distributing
workload across heterogeneous resources (Ou et al., 2012;
Delimitrou & Kozyrakis, 2014) such that faster resources
do not have to wait for slower ones. Elastic execution,
specifically, enables optimization opportunities for ML ap-
plications where scaling-in or -out as training progresses
can increase accuracy and reduce training time (Kaufmann
et al., 2018).

As of today, most ML distributed frameworks (e.g., Abadi
et al. (2016); Paszke et al. (2017)) do not support elastic
execution nor load balancing, which makes them inherently
inefficient in shared environments and on heterogeneous
clusters. Recently, recognizing the importance of elasticity,
a number of systems attempt to address elasticity (Zhang
et al., 2017; Harlap et al., 2017; Qiao et al., 2018) for ML ap-
plications using micro-tasks or similar mechanisms. Micro-
tasks, where work is split up into a large number of short
tasks executed as resources become available, have been ex-
tensively used in generic distributed application frameworks
to address elasticity and load balancing (Zaharia et al., 2010;
Ousterhout et al., 2013), so they seem a natural fit for this
problem.

In this paper we argue that micro-tasks are ill-suited for
ML training because they require a large number of short
independent tasks for efficient scheduling. In order to sup-
port full system utilization, the number of tasks has to be
chosen based on the largest possible degree of parallelism
an elastic system could potentially experience. The number
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Figure 1. Example of the correlation between data parallelism and
the number of epochs needed to achieve a certain training goal.

of tasks, in turn, constitutes a lower bound on the data par-
allelism of each update which means that you need to pick
the mini-batch size in mSGD1 or the number of partitions in
CoCoA accordingly. This however is not a desirable thing
to do from an algorithmic point of view, since it is widely
acknowledged that data parallelism comes at the cost of
convergence in distributed ML applications. Note that when
talking about convergence we refer to epochs to converge,
where an epoch refers to one pass through the entire dataset.

Extensive studies of this impact for mSGD have, among
others, been conducted by Shallue et al. (2019), Keskar et al.
(2016) and Goyal et al. (2017). Figures 1a and 1b also ex-
emplify this. The training of a simple convolutional neural
network (CNN) on the CIFAR-10 dataset using mSGD re-
quires 44% more epochs to converge when increasing the
batch size from 256 to 512. Similarly, doubling the number
of partitions from 16 to 32 for the training of a on the Criteo
dataset using CoCoA (Jaggi et al., 2014; Smith et al., 2018)
increases the number of epochs to converge by 65%. While
mitigation strategies, such as warm-up (Goyal et al., 2017)
and layer-wise adaptive rate scaling (You et al., 2017) exist,
the fundamental problem remains. Overall, micro-tasks
lead to an inherent conflict between the number of tasks to
use for scheduling efficiency, where higher is better, and
algorithmic ML training efficiency, where lower is better.

Fortunately, as we show in this paper, the iterative nature
of ML applications allows implementing load balancing
and elasticity without micro-tasks, thus eliminating the
above inherent conflict. We realize our ideas in Chicle2, an
elastic, load balancing distributed framework for iterative-
convergent ML training applications. Chicle combines
scheduling flexibility with the efficiency of special-purpose
rigid ML training frameworks. Chicle uses uni-tasks and
schedules (stateful) data chunks instead of tasks. Each node
executes only a single (multi-threaded) task that processes
training samples from multiple data chunks within a single
execution context. Data chunks can be moved efficiently

1The mini-batch size needs to be chosen as a multiple of the
number of tasks in order to keep relative job overheads low.

2Chicle is the Mexican-Spanish word for latex from the
sapodilla tree that is used as basis for chewing gum and a ref-
erence to Chicle’s elasticity.

between tasks to balance load and to scale in and out. This
allows Chicle to use the optimal level of data parallelism
for the currently used number of resources and combines
scheduling with algorithmic efficiency. Conversely, Chicle
is able to efficiently adjust the resource allocation based on
feedback from the training algorithm and resource availabil-
ity. The main contributions of our work are:

1) We propose uni-tasks, a new task model that removes
the conflict between scheduling and algorithmic effi-
ciency. We implement a prototype thereof in Chicle, a
distributed ML framework that enables elastic training
and dynamic load balancing in heterogeneous clusters.

2) Our evaluation illustrates that uni-tasks require signif-
icantly fewer epochs, and subsequently less time, to
converge in elastic and load-balancing scenarios com-
pared to micro-tasks.

Our paper is structured as follows: First, we provide neces-
sary background information on the relationship between
data parallelism and convergence for ML training algorithms
as well as requirements for elastic execution in §2 followed
by a discussion of the main ideas behind uni-tasks (§3). We
continue with a detailed description of Chicle’s design and
implementation (§4) and present results of our experimental
evaluation (§5) and conclude (§6).

2 BACKGROUND & MOTIVATION

Increasing parallelism for distributed execution of ML train-
ing workloads has well-understood tradeoffs. On one hand,
ample parallelism results in less work per each indepen-
dent execution unit (task) which leads to increased over-
heads (Totoni et al., 2017). On the other hand, ample par-
allelism allows utilizing many nodes and enables efficient
scheduling (Ousterhout et al., 2013), dealing with load im-
balances, and supporting elasticity. Elasticity specifically
is increasingly important, since to maximize the efficiency,
distributed applications are expected to scale-in and -out
based on workload demands of themselves and their co-
habitants. Indeed, exposing ample parallelism by dividing
the problem into many micro-tasks is the standard way to
implement elasticity despite the resulting execution over-
heads. Litz (Qiao et al., 2018), for example, a recent ML
elastic framework uses micro-tasks and reports up to 23%
of execution overhead.

While these overheads are important, our work is motivated
by another tradeoff that is specific to ML applications but not
well recognized in the ML systems community: increased
data parallelism hinders the convergence of ML training.
In contrast to overheads, this problem exists purely at the
algorithmic level. Generally, distributed training algorithms
require more steps to converge in the face of high paral-
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lelism (Shallue et al., 2019). The implication for building
elastic ML frameworks is that using micro-tasks, i.e., ample
parallelism to gain scheduling flexibility, leads to an inher-
ent trade-off in terms of the number of the examples that
need to be processed to converge to a solution.

In this section, we motivate our design by illustrating this
issue in two different ML algorithms: Mini-batch stochastic
gradient descent (SGD), extensively used to train neural
networks, and CoCoA, a state-of-the art framework for dis-
tributed training of GLMs. Prior to that, we provide some
necessary background on elastic scheduling and ML train-
ing.

2.1 Elasticity and load balancing

Both load balancing and elasticity are necessary to effi-
ciently utilize shared infrastructure. Both are typically im-
plemented using micro-tasks in generic analytics frame-
works, such as Spark (Zaharia et al., 2010) and ML frame-
works (Qiao et al., 2018; Zhang et al., 2017), where work
is divided into a large number of tasks that are distributed
among nodes. Tasks, i.e., self-contained, atomic entities of a
function and input data, are a common abstraction of work,
and represent the scheduling unit.

Under a task scheduling system, a large number of tasks
are required to achieve efficiency. To allow elastic scale-out
during training, the number of tasks needs to be at least as
large as the maximum number of nodes that will be available
at any point during training. Furthermore, common practice
over-provisions nodes with many tasks per node to allow for
efficient load balancing. The Spark tuning guidelines (Spark,
2019), for instance, recommend to use of up to 2–3 tasks per
available CPU, while other works propose using millions of
tasks (Ousterhout et al., 2013).

2.2 Distributed training algorithms

Next, we discuss training in general and introduce two train-
ing algorithms that we use in this paper. Most distributed
training algorithms iteratively refine a model m on a train-
ing dataset D such that m converges towards a state that
minimizes or maximizes an objective function. During each
iteration i, an updated model m(i) is computed on a ran-
domly chosen subset D̂ ⊆ D:

m(i) = m(i−1) + f∆(m(i−1), D̂) (1)

The update function f∆ is computed in a data parallel man-
ner across K nodes by splitting up D̂ into K disjoint parti-
tions Dk ⊆ D̂.

f∆(m(i−1), D̂) =
1

K

K∑
k=1

f∆,k(m
(i−1), Dk) (2)

The computation of f∆ is self-correcting to a certain de-
gree, i.e., bounded errors are averaged out in subsequent
iterations, and can therefore be tolerated. This property is
often exploited for ML-specific optimizations, e.g., to mit-
igate stragglers (Cipar et al., 2013; Cui et al., 2014; Dutta
et al., 2018; Ho et al., 2013). The general structure of the
algorithms we are considering is depicted in Figure 2: K
workers independently work on separate subproblems f∆,k,
each defined on a different partition Dk of the data and then
combine their results to update a global model m, which
forms the basis of the next iteration. During each iteration, a
worker processes H ×L samples, of which H different sets
of L independent samples are processed sequentially. After
each set of L samples, a local model update is performed,
such that learning on subsequent samples within an iteration
can exploit knowledge gained so far.

︸ ︷︷ ︸
H×︸ ︷︷ ︸

one iteration

local model updateL× training sample

K× 1
K

∑

global model update

Figure 2. General structure of distributed ML algorithms we con-
sider in this paper.

While our approach is applicable to a wide set of distributed
ML training algorithms, in this paper, we focus on the fol-
lowing two algorithms.

Local SGD (Lin et al., 2018). A state-of-the-art algo-
rithm and improvement upon mSGD, the de-facto standard
for training of neural networks (NNs) and variants thereof.
Here, D̂ refers to the batch and |D̂| = H × L refers to the
batch size hyper-parameter (e.g. |D̂| = 64). For, H = 1
lSGD degrades to mSGD. The negative effect of data par-
allelism on the convergence of is a fundamental property
of mSGD. An extensive study of this property is presented
by Shallue et al. (2019).

CoCoA (Jaggi et al., 2014; Smith et al., 2018). A state-
of-the-art distributed framework for the training of GLMs.
It is designed to reduce communication and thus processes
significantly more samples per iteration than, e.g., mSGD.
We use CoCoA with a local stochastic coordinate descent
(SCD) solver (Wright, 2015). The structure in Figure 2 is
parameterized with L = 1, H = |D̂|, whereas D̂ = D. The
local update function f∆,k is computed by a local optimizer
on partitions Dk, with D =

⋃K
k=1Dk. In a homogeneous

setting each node typically processes 1/K-th of the training
dataset per iteration. Data parallelism is determined by the
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number of partitionsK. Local optimizers detect correlations
within the local dataset without global communication, i.e.,
the more data is randomly accessible to each optimizer
instance, the less epochs are needed for CoCoA to converge.
Conversely, if data access is limited in size, as would be
the case when using many tasks, or if no random access
is possible, convergence suffers. Kaufmann et al. (2018)
empirically study the relationship between convergence rate
andK and show that by starting with a largeK and reducing
it after a few iterations, convergence rate per epoch and time
can be increased significantly.

Summary. Both algorithms exhibit an inherent trade-off
between data parallelism and convergence. Intuitively, a
higher degree of parallelism limits the opportunity to learn
correlations across samples, and thus hurts convergence.
While we focus on two particular methods in this paper, the
trade-off between parallelism and convergence is fundamen-
tal in parallel stochastic algorithms.

2.3 Micro-tasks for distributed training

As exemplified in Figure 1, increasing data parallelism
comes at the cost of increasing the total amount of work to
achieve a certain training goal. Up until a point, the cost in-
crease is smaller than the gain in potential parallelism, such
that overall training time can be reduced by increasing the
data parallelism. This, however, is only true if and only if all
tasks are executed in parallel. In shared and heterogeneous
environments, this is generally not true.

Consider the CIFAR-10 example from Figure 1. For sim-
plicity, we assume perfect linear scaling and zero system
overheads. If one wanted to train on up to 256 nodes, at
least 256 tasks are required and thus a data parallelism of
256 or higher. According to the data in Figure 1, this re-
quires 10 epochs to converge. Assuming that one epoch in
this configuration – where all 256 tasks can run in parallel
– requires one second, training completes after 10 seconds.
The nature of shared systems is, however, that there are
not always enough nodes available to execute all tasks in
parallel. For instance, let us assume that only 128 nodes
are available during the runtime of the application. Then
each epoch with 256 tasks requires two seconds as two tasks
have to run back to back on each node, resuling in a total
training time of 20s. If one had used a data parallelism of
only 128 from the beginning, instead of 256, training would
only require eight epochs or 16s, instead of 20s, resulting in
a training time reduction of 20%. This example illustrates
the difficulty of elastic scaling of ML training using a micro-
task-based system: In many cases, it is only efficient if the
maximal number of nodes (resources) are actually available
during most of the runtime. This, however, stands in con-
trast to the goals of elasticity. This problem is even more
pronounced if we also consider load balancing between dif-

ferently fast nodes. The number of tasks required to allow
for fine-granular work redistribution is disproportionately
higher than just for elastic scaling alone.

3 UNI-TASKS FOR DISTRIBUTED TRAINING

In the previous section, we showed how micro-tasks inhibit
the performance of distributed training. In this section we
argue that a different execution model, uni-tasks, is bet-
ter suited for ML training applications. The core idea is
very simple: to only use a single task per node. While
this in itself is not a new concept, scientific computing has
been using MPI that follows this approach for decades, the
difficulty is to address the scheduling challenges that are
typically addressed by micro-tasks, namely elasticity and
load-balancing. Fortunately, we can exploit the iterative
nature of ML training to tackle these challenges.

Core concepts. Uni-tasks consists of two main concepts:
immobile tasks and mobile data chunks.

1. All training samples are stored across a large set of
small fixed-sized (stateful) data chunks that can be
moved between tasks by the scheduler. Data chunks
can store dense and sparse training data vectors and
matrices of variable size.

2. Each node only executes a single task per node (hence
the name uni-tasks). Each task has full, random access
to all training samples across all data chunks that are
local to a task.

Additionally, a contract between the scheduler and the appli-
cation is defined that regulates ownership of a data chunk.

1. During an iteration, a task owns all task-local data
chunks. It can read all and make modifications to data
stored in the data chunks, e.g., to update per-sample
state (e.g., as needed in CoCoA). During this period,
the scheduler does not add or remove data chunks.

2. In-between two iterations, the scheduler owns all data
chunks. Tasks must not modify any data chunks and
the scheduler is free to add or remove data chunks from
any task. Tasks are notified by the scheduler of any
data chunk addition or removal.

By moving data chunks between tasks in-between iterations,
uni-tasks allows one to add and remove tasks for elastic
scaling and to balance load across tasks on heterogeneous
clusters. Uni-tasks assumes a correlation between the num-
ber of training samples in task-local data chunks and the
number of samples processed by each task during each it-
eration. In contrast to micro-tasks, scheduling granularity
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is determined by the number of data chunks, not by the
number of tasks. The number of data chunks does not con-
stitute a lower bound for the level of data parallelism, as
multiple data chunks are processed by the same task, hence
the number level of data parallelism can be lower than the
number of data chunks. In contrast to MPI, uni-tasks defines
a method to shift load between tasks.

In the following paragraphs, we discuss how elasticity and
load balancing are addressed for distributed training when
using uni-tasks.

Elasticity. Elasticity is necessary to efficiently and fairly
utilize resources in shared clusters, to reduce waiting times
for job starts, and to react do varying resource demands of
applications throughout their runtime. We address elasticity
in the uni-tasks setting by spawning new tasks as nodes are
added to the application and by terminating them if nodes
need to be released. In both cases data chunks are redis-
tributed across all available tasks. In the latter case, however,
a prior notification is required such that data chunks can be
transferred before the task is terminated. Elastic scaling is
only possible in-between iterations.

The application is free to adjust the level of data parallelism
during each iteration to any value equal or larger than the
number of tasks. For both test applications, we always
choose the lowest possible value.

Load balancing. Load balancing is necessary to deal with
heterogeneity between cluster nodes as well as between
different hardware (e.g., CPUs vs GPUs) that results in
runtime differences between tasks that process the same
amount of input data.

To address heterogeneity, we exploit the fact ML training al-
gorithms are typically iterative and process a known amount
of training samples during each iteration, which allows us
to learn how long each task needs to process a training sam-
ple. Uni-tasks assumes that the number of training samples
processed by each task is a fraction of the total number of
training samples across all task-local data chunks, e.g., a
task with twice as many training samples as another task
also processes twice as many per iteration. This enables the
scheduler to influence the runtime by moving data chunks
from tasks on slower to tasks on faster nodes until their
runtime aligns.

As tasks may process a different number of training sam-
ples during each iteration, their model updates need to be
weighted differently as well (as proposed in Stich (2018)).
We do this by multiplying the model update f∆,k of task k
by Dk/D̂ (see Equation 2).

4 CHICLE DESIGN AND IMPLEMENTATION

Here, we describe how Chicle implements an elastic dis-
tributed training framework using uni-tasks.

SolverSolverSolver

PolicyPolicyPolicy

Trainer

Driver Worker

control

data/model
metrics

metrics
decisions

decisions

metrics

data/model

Figure 3. High-level architecture of Chicle.

4.1 Overview

Chicle, as shown in Figure 3, is based on a driver/worker
design with a central driver (trainer) and multiple workers
(solvers) communicating via a RDMA-based RPC mech-
anism (see §4.3). The driver executes the trainer module,
which, in tandem with multiple policy modules, is responsi-
ble for coordinating training. Policy modules make schedul-
ing decisions, such as assigning chunks, balancing load, and
scaling in and out. Worker processes execute solver modules
(uni-tasks) and implement the ML algorithms (e.g., SCD for
CoCoA). Crucially, only a single (multi-threaded) worker
process is executed per node. Solvers are controlled by the
trainer and policy modules, which in turn receive model and
state updates as well as metrics (e.g., duality-gap).

Chicle applications need to implement a trainer and solver
module, and may optionally implement policy modules to
control system behavior during training. For instance, our
lSGD implementation uses libtorch (from PyTorch (Paszke
et al., 2017)) in the solver for forward and backward prop-
agation steps. The trainer module acts as synchronous pa-
rameter server that merges updates from solver instances. A
simplified version of the lSGD code is shown in Listing 1.

In the remainder of this section, we elaborate on each mod-
ule as well as the communication subsystem and in-memory
data format of Chicle.

4.2 Trainer and solver

The trainer and solver modules represent application code.
Trainer modules are the central controlling entity and co-
ordinate individual solver instances in tandem with policy
modules. Policy modules can implement complex (reusable)
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optimizations (e.g., online hyper-parameter tuning), and
solver modules implement arbitrary functions for distributed
execution. Only a single solver module is executed per node
and application, therefore, each solver module can internally
spawn threads and use all CPUs or GPUs of a node. Trainer
and solver modules periodically synchronize at global barri-
ers, e.g. in-between iterations, but can exchange additional
messages at any time.

4.3 Communication subsystem

In distributed training, communication can easily become a
bottleneck. For example, using CoCoA to train a model for
the Criteo dataset (see Table 1), each task has to send/receive
≈16MiB in updates in-between iterations. For that reason,
we built our communication subsystem on RDMA. RDMA
allows low-overhead, zero-copy, one-sided operations for
bulk data transfers, such as model and training (input) data
as well as two-sided remote procedure calls (RPCs) using
RDMA send/receive.

4.4 In-memory chunk data format

To fully exploit RDMA, data is stored in static, consecutive
memory regions. The in-memory representation of training
(input) data is based on fixed-sized data chunks. Chunks
can store sparse or dense training data vectors and matri-
ces. The number of training samples per data chunk can
vary depending on their size. Chunks allow to easily move
training data subsets between nodes. The chunk size can be
tuned to an optimal value depending on dataset and system
properties, e.g. to the CPU cache size.

Chicle’s in-memory format is application agnostic and sim-
ply provides applications a contiguous memory space that
can be moved across nodes in-between iterations. For in-
stance, our lSGD implementation stores the backing mem-
ory of native PyTorch tensor objects in data chunks wheras
for CoCoA, we simply store sparse vectors as well as per-
sample state in a data chunk. Having the ability to store
per-sample state in a data chunk is important as it ensures
that state and the data it correlates to are always moved
together.

One important limitation of Chicle’s data chunk is that they
must not require any serialization, as one-sided RDMA read
operations are used to transfer them. Deserialization is pos-
sible. In the case of PyTorch, for instance, we restore tensor
objects via the torch::from blob function, which cre-
ates a new tensor object backed by the in-chunk data.

4.5 Policies

Chicle implements a flexible policy framework which we
use to implement vital parts of the system. Policies make
decisions based on events and metrics they receive from

trainer and solver modules and return proper decisions for
them. Each policy module runs in a separate thread and
multiple policy modules can run at the same point in time.
Policy modules coordinate with the trainer and can coordi-
nate with each other. Next, we present the most relevant
policy modules.

Elastic scaling policy. This module interfaces with the
resource manager, e.g., YARN (Vavilapalli et al., 2013), to
make resource requests and get resource assignment and
revocation notices. Upon receiving a new resource assign-
ment, it registers a new worker (task) and notifies the trainer.
After the current iteration, it shifts data chunks from old to
new workers. It relies on the rebalancing policy (§4.5) to
ensure proper load balancing. Chicle expects the resource
manager to give advance notice before revoking a resource
allocation. Upon receiving such a notice, it redistributes
data chunks from to-be freed workers to remaining ones in a
round robin fashion. As before, it relies on the rebalancing
policy to ensure load balance.

Rebalancing policy. The rebalance policy observes itera-
tion runtimes over multiple iterations to learn the per-sample
runtime of each task, as described above. Between iterations,
solvers are ranked according to their median performance
over the last I iterations and chunks moved gradually, across
multiple iterations, from slower to faster solvers until perfor-
mance differences are smaller than the estimated processing
time of a single chunk. This policy can also be used to ad-
dress slowly changing performance of nodes, e.g. ones that
are caused by the start/end of long running background jobs
and restore balance after scaleing in and out. Its robustness
against runtime fluctuations can be adjusted by tweaking I .

We decided against reloading data from a (shared) filesys-
tem as data loading turned out to be more expensive than
transferring loaded data between nodes, especially if input
files are stored on a shared network filesystem. Moreover,
our in-memory format can combine data chunks with the
corresponding state, which needs to be transferred between
workers anyway.

Other policies. Apart from the above described policies,
we have implemented policies for straggler mitigation,
global background data shuffling and others.

5 EVALUATION

Our evaluation shows how Chicle performns in an elastic
setting where nodes are added and removed during training
and on a heterogeneous cluster where nodes are differently
fast. As no other elastic, load-balancing ML training frame-
work is publicly available, we emulate micro-tasks with
Chicle. Additionally, we compare Chicle with two state-of-
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the-art rigid ML training frameworks in non-elastic, non-
heterogeneous scenario to establish a performance baseline.

5.1 Evaluation setup and methodology

Our test cluster consists of 16+1 nodes. Nodes are equipped
with Intel Xeon E5-2630/40/50 v2/3 with 2.4 – 2.6GHz
and 160 – 256GiB RAM. We execute Chicle inside Docker
containers. For some heterogeneity experiments, we reduce
the CPU frequency of four nodes from 2.6 to 1.2GHz. All
nodes are connected by a 56GBit/s Infiniband network via
a Mellanox SX6036 switch. During experiments, up to 16
nodes are used for workers and one node for the Chicle
driver.

Our test applications are lSGD and CoCoA, using test ac-
curacy as a metric for convergence for the former and the
duality-gap (Jaggi et al., 2014; Smith et al., 2018) for the
latter. We train on each dataset for≈20 minutes, after which
we terminate the training. Each experiment is repeated five
times and average results are presented. Table 1 lists all
datasets we use during the evaluation. The chunk size is
set to 1MiB in CoCoA experiments and, due to the smaller
dataset sizes, 200KiB for lSGD experiments.

Table 1. Number of samples (#S), features (#F) and categories (#C)
of datasets used in the evaluation. Size is given for the in-memory
representation.

DATASET #S #F #C SIZE

HIGGS 11M 28 2 2.5GIB
CRITEO 46M 1M 2 15GIB
CIFAR-10 60K 3072 10 162MIB
FASHION-MNIST 70K 784 10 30MIB

Synchronous local SGD. We implemented lSGD (Lin
et al., 2018) for Chicle based on libtorch, the C++ backend
of PyTorch (Paszke et al., 2017). We train a CNN with relu
activation composing of two convolutional layers with max-
pooling followed by 3 fully connected layers on the CIFAR-
10 and Fashion-MNIST datasets using lSGD. We use L =
8 and H = 16, a momentum of 0.9 and a base learning
rate α of 1e-4 for CIFAR-10 and 5e-4 for Fashion-MNIST.
According to best practice, we scale the learning rate with
the square root of the number of tasks K such that the
effective learning rate α′ = α×

√
K. The global batch size

(number of samples processed during each iteration across
all tasks) is K × L × H . For micro-tasks, we select four
values for K = {16, 24, 32, 64}. Using different values of
K allows us to assess the trade-off between scheduling and
algorithmic efficiency. Here, K remains constant during the
training. For uni-tasks K equals number of currently used
nodes. As mSGD is a special case of lSGD with H = 1
we trivially also support mSGD, which we use for baseline

comparisons with PyTorch.

CoCoA. We implemented CoCoA with a local SCD
solver for Chicle based on the original Spark implemen-
tation (Smith, 2019). We train a support vector machine
(SVM) on the Higgs and Criteo datasets. We use SCD as
local solver with L = 1 and H equal to the number of local
training samples. The number of tasks K is the same as
above. The algorithm parameter σ is set to the the number
of tasks, and the regularization coefficient λ to the number
of samples × 0.01.

Micro-tasks. As no elastic ML training framework based
on micro-tasks (or any other technique) is publicly avail-
able and general-purpose frameworks such as Spark do not
perform competitively (Dünner et al., 2017), we emulate
micro-tasks using Chicle with a constant number of tasks K
and measure the convergence rate per epoch. It is possible to
do this accurately because in micro-tasks, convergence rate
per epoch only depends on the number of tasks but not on
the number of nodes or on which node a task is executed on.
It does not, however, allow us to directly measure the con-
vergence rate over time for micro-tasks. Instead, we project
the latter by assuming an optimal schedule for the number
of tasks, nodes and relative node performance. Henceforth,
the number of micro-tasks is given in parentheses.

Using Chicle to emulate micro-tasks during elasticity and
load balancing experiments has the additional benefit of
keeping implementation-specific variables, such as the im-
plementation of the training algorithms (lSGD and CoCoA),
the communication subsystem (e.g., RDMA vs. TCP/IP),
and other factors constant.

5.2 Baseline comparisons

We compare Chicle against Snap ML (Dünner et al., 2018)
for CoCoA and PyTorch (Paszke et al., 2017) for mSGD in
a non-elastic, non-heterogeneous scenario using the same
training algorithms, hyper-parameter values and datasets on
the test setup described above. None of the novel function-
ality of Chicle was used in this experiment. The purpose
of this experiment is to show that Chicle does not impair
performance in the normal non-elastic, non-heterogeneous
case. We measure convergence rate per epoch and over time.
Detailed results of this experiment are provided in §A.1 and
are summarized here.

Convergence behavior per epoch for mSGD is identical on
Chicle and PyTorch while Chicle requires slightly less time
per epoch. Compared to Snap ML, Chicle performed vir-
tually identically for the Higgs dataset but outperformed
it for the Criteo dataset due to differences in data parti-
tioning. This experiment confirms that Chicle’s baseline
performance is on par with that of highly optimized, estab-
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lished ML training frameworks. In contrast to those, Chicle
is able to elastically scale during execution and balance load
in heterogeneous clusters. Both aspects are evaluated in the
following.

5.3 Elastic scaling

In this section, we evaluate Chicle with the elastic scaling
policy enabled in two elastic scenarios and compare it to
micro-tasks. Specifically, we consider: i) the effect of data
parallelism (batch size for lSGD, and number of partitions
for CoCoA) on the number of epochs to converge, and ii) the
trade-off between scheduling efficiency and convergence
under micro-tasks.

Methodology. Our test scenarios consist of gradual scale-
in from 16 to 2 nodes and scale-out from 2 to 16 nodes.
We add (remove) 2 nodes every 20s until the maximum
(minimum) number of nodes is reached. During each run,
we measure convergence per epoch and project convergence
over time using an optimal schedule for uni-tasks and micro-
tasks for each number of nodes. In micro-tasks, elastic
scaling works by distributing a fixed number of tasks across
more or fewer nodes and not by adjusting the number of
tasks. Moreover, the number of nodes is typically not known
by the application. Hence, we assume a fixed number of
tasks independently of the nodes used. To project the time
per iteration, we assume a normalized task runtime (one
task, processing 1/16th of the data takes one time unit)
and compute the number of task waves necessary for each
iteration.

• K micro-tasks on N nodes require dK/Ne task waves,
as only N tasks can be executed at the same time. In
consequence, each iteration requires 16/K × dK/Ne
time units. For instance, K = 32 tasks on N = 14
nodes require d32/14e = 3 task waves and 16/32 ×
3 = 1.5 time units per iteration.

• For CoCoA on uni-tasks, load is redistributed such that
a single iteration takes 16/N time units. For instance,
on 14 nodes, one iteration requires 16/14 = 1.14 time
units. For lSGD on uni-tasks, the batch size is adjusted
such that each iteration still only requires one time unit.
Instead, the number of iterations per epoch increases
by 16/N .

Our time projections do not include data transfer overheads.
As each task needs to communicate model updates, the total
communication volume of micro-tasks is as least as high as
that of uni-tasks, hence by ignoring data transfer overheads,
we favor micro-tasks.

Results. Figure 4 shows detailed convergenve over time
plots for elastic scale-in and out for different data parallelism

values. Convergence per epoch results are provided in the
appendix (§A.2). Generally, the higher the data parallelism,
the more epochs are needed to converge for micro-tasks,
which is consistent with our initial problem statement and
previous studies (Shallue et al., 2019). As Figure 4 shows,
the increased scheduling efficiency of using more micro-
tasks cannot compensate for the reduced convergence rate
per epoch and micro-tasks (16) consistently outperforms
other micro-tasks configurations.

Moreover, the convergence rate over time with uni-tasks is
equal or higher during scale-in and -out, showing that the
ability to adjust the level of data parallelism across a wide
range can improve convergence per epoch and over time.3

This ability is not only beneficial in shared environments
but can also be exploited to accelerate the training process
in general. Kaufmann et al. (2018) show for CoCoA, that
scaling in training at specific points in time can accelerate
training by up to 6×. Smith et al. (2017) report that increas-
ing the batch size as alternative to reducing the learning rate
once convergence slows down is beneficial for mini-batch
SGD. Both cases could be implemented with Chicle.

However, results differ across algorithms and datasets. For
lSGD, scale-in as well as scale-out on uni-tasks improves
convergence over time compared to the best micro-tasks
configuration. In the scale-out case, the global batch size
for uni-tasks is smaller in the beginning but equalizes with
micro-tasks (16) quickly as nodes are added. In the scale-in
case, the global batch size for uni-tasks is the same as for
micro-tasks (16) in the beginning but is quickly reduced. As
it is smaller for longer, compared to the scale-out case, the
convergence benefits over micro-tasks (16) are higher in the
scale-in case.

The average maximal test accuracy for uni-tasks is virtually
identical to that of micro-tasks (16), which is the best micro-
tasks configuration in all but one case: In the scale-in case
for CIFAR-10, uni-tasks achieves an average maximal test
accuracy of 65.6% compared to 65.0% for micro-tasks (16).

Results for CoCoA are similar. Scaling in reduces the num-
ber of epochs as well as time to converge, as suggested in
Kaufmann et al. (2018). After each scale-in step (which
can be identified in Figure 4c and Figure 4d) convergence
rate improves. The reason for this behavior is that the local
SCD solver has access to additional training data and can
therefore identify new correlations across training samples
locally. Scaling out behaves similarly which is, at first sight,
counter intuituve as every task gets to see fewer and fewer
training samples as training scales out. However, during
scale-out the data chunks that are moved to newly added
tasks are picked randomly from each old task which effec-

3Applications are free to choose any level of data parallelism
equal or larger the number of tasks if it benefits convergence.
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Figure 4. Convergence over time (projected) vs. data parallelism for elastic scale-in (top) and scale-out (bottom) experiments. The
number of micro-tasks is given in parentheses. Time is normalized to 100 time units.

tively shuffles training samples. This also allows the solver
to identify new correlations locally while also decreasing
the duration of each iteration.

5.4 Load balancing

In this section, we compare Chicle, with the load balancing
policy enabled, to micro-tasks in a heterogeneous scenario
with nodes of different speed. Such a scenario can occur
in practice, as compute clusters are often not replaced com-
pletely but extended and partially replaced over time using
multiple generations of hardware (e.g., CPUs, GPUs) (De-
limitrou & Kozyrakis, 2014). Even the same cloud instance
type can be backed by different models and generations of
hardware (Ou et al., 2012).

In a heterogeneous scenario, faster nodes should perform
more of the overall work than slower nodes, such that all
nodes finish at the same time for each iteration. In a micro-
task based system, this is achieved by scheduling more
tasks on fast nodes than slow nodes. This, however, requires
multiple tasks to be executed per node so that one or more of
them can be moved to other nodes. In consequence, no load
balancing is possible with micro-tasks (16) on our 16 node
test cluster. Chicle balances load by shifting data chunks, of
which there are typically hundreds or thousands, from slow
nodes to fast nodes and by adjusting the number of samples
that individual uni-tasks process in each iteration, such that
all tasks finish at the same time, independently of the node
performance.

Methodology. We evaluate heterogeneous load balancing
in two scenarios: 1) We configure the load balancing policy
of Chicle to assume eight fast and eight slow nodes, with the
latter being 1.5× slower than the former and measure the
number of epochs to converge. This simple scenario allows
us to project time to convergence. 2) We execute Chicle
with the load balancing policy enabled on our test cluster
where the CPU frequency of four nodes has been reduced
to increase the level of heterogeneity. We measure the task
and iteration runtimes as well as the number of data chunks
of each task across the load balancing process to show how
Chicle can correctly learn task runtime and balance load in
response.

In micro-tasks, load balancing works by balancing fixes-
size tasks across all nodes and not by adjusting the number
training samples per task. Hence, we assume that each task
processes the same number of training samples per iteration.
To project the time per iteration, we assume a normalized
task runtime: One task, processing 1/16th of the data takes
one time unit on the fast nodes and 1.5 time units on the
slow nodes. We use this to compute the optimal (shortest)
schedule for each iteration.

• For micro-tasks, K tasks on eight fast and eight slow
nodes, the optimal schedule is max(i × 1.5s, j ×
1.0s)×16/K long with i (j) being the number of tasks
on each slow (fast) node such that the schedule length is
minimal. For instance, with K = 64 tasks, the optimal
schedule is max(3× 1.5s, 5× 1.0s)× 16/64 = 1.25s
per iteration.
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Figure 5. Convergence over time (projected) when balancing load balancing in a heterogeneous cluster. The number of micro-tasks is
given in parentheses. Time is normalized to 100 time units.

• For uni-tasks, load is redistributed such that fast nodes
process 1.5× as many training samples as slow nodes,
resulting in an iteration duration of 1.2s.

As before, our time projections do not include data transfer
overheads, which favors micro-tasks.

Results. Figure 5 shows detailed convergenve over time
plots for different data parallelism values. Convergence
per epoch results are shown in §A.3. Per epoch, Chicle
converges as fast as micro-tasks (16). Over time, however,
Chicle converges faster than any micro-tasks configuration
as it requires as few epochs to converge as micro-tasks (16)
but can balance load more effectively than micro-tasks (64),
which reduces iteration duration and thus combines algo-
rithmic and scheduling efficiency. For lSGD, the average
maximal test accuracy is ≈0.5% lower with uni-tasks than
with micro-tasks (16). However, no load balancing is actu-
ally possible with the latter. Compared to other micro-task
configurations, uni-tasks achieves a similar average maximal
test accuracies. For CoCoA, uni-tasks converges virtually
identical to micro-tasks (16) per epoch but outperforms it
over time due to its ability to balance load more effectively.

Swimlane diagrams in Figure 6 visualize the load balancing
process for the Criteo dataset on our test cluster where the
CPU frequency of four nodes has been reduced to 1.2GHz to
improve the visibility of this process. Results for the other
datasets are similar and provided in the appendix (§A.3).

The top diagram shows task runtimes per node and iteration
without load balancing. Here, iteration duration is deter-
mined by the four slow nodes. Task runtimes are visualized
by horizontal black bars. Bars that start at the same time
represent tasks of the same iteration. Space in-between
bars represents time during which tasks are inactive, i.e.,
communicating or waiting for the latest model update from
the trainer. The middle diagram shows task runtimes with
load balancing enabled. During the first iteration, task run-
times are the same as without load balancing. As load is

 0 10 20
time (s)

no
de

task runtime (w/o load balancing)

 0 10 20
time (s)

no
de

task runtime (w/ load balancing)

number of data chunks per iteration

no
de

relative workload (w/ load balancing)

Figure 6. Visualization of the load balancing process on a real
heterogeneous cluster.

shifted during subsequent iterations, task runtimes align and
iteration durations reduce. The bottom diagram shows the
relative workload (not time) of tasks in the middle diagram.
It shows how the workload is shifted from slow to fast nodes.
The length of the bars represent the number of data chunks
for each task and iteration, relative to all other tasks and it-
erations. After a few iterations, workload and task runtimes
stabilize as Chicle has learned the performance of each node
and balance load accordingly.

6 CONCLUSION AND FUTURE WORK

We presented Chicle, a distributed ML training framework
based on uni-tasks. Chicle enables efficient elastic scaling
and load balancing without incurring overheads that are
typical for micro-task systems and can thereby accelerate
time to convergence by orders of magnitude in some cases.
Our work touches many issues that distinguish distributed
ML training from regular distributed applications, such as
their sensitivity to data parallelism. Still, many aspects of
ML workloads remain unexplored, and we believe there is
a lot of potential to further exploit the unique properties of
ML algorithms to build more efficient systems.
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A APPENDIX

A.1 Baseline comparisons

We compare Chicle against Snap ML (Dünner et al., 2018)
for CoCoA and PyTorch (Paszke et al., 2017) for mSGD in a
non-elastic, non-heterogeneous scenario. Neither compared-
to framework is able to elastically scale nor balance load.
The purpose of this comparison is to show that the elasticity
and load balancing capabilities of Chicle and uni-tasks do
not come at a cost of performance in the normal case. In
consequence, Chicle’s elasticity and load balancing policies
are also not used during these experiments. Both frame-
works are executed with RDMA-enabled MPI communica-
tion backends. We measure the convergence per epoch and
over time. Each experiment is repeated 5×.

PyTorch. As no lSGD implementation for PyTorch exists,
we compared Chicle to PyTorch using mSGD. mSGD is a
special case of lSGD with H = 1. Chicle’s mSGD training
algorithm uses libtorch, the C++ backend of PyTorch, which
allows us to rule out the implementation of the training
algorithm as source for any potential differences. For both
datasets, a learning rate of 0.002 and a momentum of 0.9 is
used.

Convergence per epochs is virtually identical to PyTorch.
This is expected as both are based on libtorch and therefore
use the same training algorithm implementations, CNN and
hyper-parameters. Per time, Chicle is slightly faster, which
is likely due to overheads introduced by Python, which do
not afflict Chicle, at it is natively implemented in C++. The
maximal test accuracy that was achieved within the test
duration is 65.2% for CIFAR-10 with both frameworks. For
Fashion-MNIST, Chicle has a 0.2% lead over PyTorch with
91.4%. Note that we did not tune hyper-parameters for each
dataset dataset nor adjust them online, which is why the test
accuracy for CIFAR-10 degrades slightly after reaching a
peak.

Snap ML. Chicle’s CoCoA/SCD implementation for the
training of a SVM is based on the original Spark implemen-
tation (Smith, 2019). The algorithm parameter σ is set to
the the number of tasks, and the regularization coefficient λ
to the number of samples × 0.01. Compared to Snap ML,
Chicle shows similar convergence and runtime behavior for
the Higgs dataset. For Criteo, however, Chicle converges
much faster. This is due to the sensitivity of Criteo to data
partitioning. Chicle randomly assigns data chunks to tasks,
whereas Snap ML splits the data into 16 contiguous parti-
tions. Per iteration, Snap ML is slightly faster as Chicle’s
reduce and broadcast primitives are less optimized than their
MPI counterparts used by Snap ML.

With one exception (Criteo), Chicle performs similarly to
both rigid frameworks in a baseline scenario, showing that

neither Chicle not uni-tasks impair baseline performance.
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Figure 7. Comparison with PyTorch w.r.t. convergence over epochs
(top) and time (bottom).
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Figure 8. Comparison with Snap ML w.r.t. convergence over
epochs (top) and time (bottom).



Addressing Algorithmic Bottlenecks in Elastic Machine Learning with Chicle

A.2 Elastic scaling

Figure 9 shows per-epoch convergence results for the elastic
scaling experiments.

A.3 Load balancing

Figure 10 shows per-epoch convergence results for the load
balancing experiments. Figure 11 shows the load balanc-
ing process during the first 10 (CoCoA) and 50 (lSGD)
iterations.

A.4 Example application

Listing 1 shows a simplified trained and solver module for
mSGD on Chicle.
1 Trainer::run() {
2 while (!done) {
3 signal(StartIteration);
4 wait(IterationFinished);
5 model = merge_updates(); // merge and
6 broadcast(model); // broadcast updates
7 }
8 }
9

10 Solver::run() {
11 while (!done) {
12 wait(IterationStarted);
13 model = get_model() // fetch model
14 // perform training
15 sample = get_next_sample();
16 output = model->forward(sample->data);
17 loss = compute_loss(output, sample->label);
18 loss->backward();
19 sgd_optimizer.step();
20 send(model) // post updates
21 signal(IterationFinished);
22 }
23 }

Listing 1. A minimal Chicle application example
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Figure 9. Convergence per epoch vs. data parallelism for elastic scale-in/out experiments. The number of micro-tasks is given in
parentheses.
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Figure 10. Convergence per epoch when balancing load balancing in a heterogeneous cluster. The number of micro-tasks is given in
parentheses.
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Figure 11. Task execution duration and per worker workload for the load balancing in a heterogeneous cluster experiments.


